
[/ ~ p] H E W L E T T
P A C K A R D

COMPUTER SYSTEMS CENTER
HEWLETT PACKARD LABORATORIES 15 April 1988

Position statement for ACM SIGOPS European Workshop 1988
John Wilkes

it's my belief that the issue of "autonomy vs interdependence" is at least as much a sociological,
political, and budgetary question as it is a technical one. Notwithstanding this, the problem is still an
interesting technical one from two points of view: what functions to provide to meet best the range of
sociological, political pressures, and what are the technical issues in providing these services.

In order to discuss the choices better, we probably need a classification for "autonomous systems"
o f some sort. Here's one such:

1. Independent (fully autonomous) systems. These crop in a large number of situations,
none of which are particularly o f interest here.

2. Occasionally dependent systems, that once in a while (but it doesn't matter very much
when in real time) will connect to, and take advantage of, some external services.
Examples here include portable laptop machines, where it is acceptable to operate in
an impoverished environment as an alternative to not doing work at all. These systems
aren't particularly interesting here either: resource access is typically handled on a fairly
leisurely basis, and remote utilization of the laptop is not possible (or helpful).

3. Dependent systems, which import services (function, data) in real time, but where
some work can continue even if the remote services fail, but the working environment
will be noticeably impaired if this continues for any length of time. It seems that most
"workstation users" fall into this category: they need remote dumping, printing, file
access, name lookup, etc services, but can survive for short periods of time (typically
from a couple of minutes to a few hours) with partial or complete disruption of access
to remote services.

4. Partially interdependent systems, where some resources are exported, in addition to the
use of imported ones. Obviously. the servers used by the dependent syslems belong here:
but there is a growing trend towards using other machines (particularly so-called "idle
resources") to offioad.work from a busy node, or shorten the response-time properties
of some task.

5. Fully-interdependent systems, with no local autonomy. These typically crop up in ma-
chines constructed to provide attributes of higher performance than can be obtained
from a single processing node, when incrementally scalable systems are important, and
when high availability ("fault tolerance") is required. Here there is no issue about own-
ership of individual components, and thus no real question about degrees of autonomy,
other than as needed to provide fault isolation and containment.

It's my belief that the issues of "autonomy vs interdependence" only appear in levels 3 and 4 of the
classification above, and to a large degree are research problems because of the emotional reactions
that class 3/4 usage brings to "owners" of the resource providers. Given a fixed amount of money (or
equivalent), and a set of users, different answers will arise depending on their approach to treating a set
o f machines as a common pool or as a set of privately owned systems.

It's important to distinguish "ownership" from placement. For example, my group disperses its more
powerful machines around our offices because it simplifies the electrical power distribution: nobody
cares (or knows, frequently) what one of the machines in their office is being used for, and no "'own-
ership" is felt for them, so the question of autonomy doesn't arrive.

Our experience has been that a good way to approach autonomy issues is to first remove the barriers
to fully interdependent operation, and then selectively re-impose autonomy options, made available to
"owners" o f resources.

Interdependence d e s i g n i s sues a t HP Labs
The computing environment for the group in which 1 work consists of a large number o f workstations
and larger computing engines (roughly 30 machines between the l0 people in the group), o f a wide
range of different system types and capabilities. We are part o f a much larger internetwork: some
several hundred machines on the local site, and a few thousand throughout the company. We take
daily advantage of services provided throughout HP (for example, remote software installation to and
from HP Labs, Bristol).

Some machines act as servers to the others-- these fall into the "must be up" category; others are
" 'home" machines for individual users, repositories for mail, private work, environment customization
files, and the like. Others run discless as part o f a cluster o f machines, which all share a single seamless
file system: these are used variously for testing purposes and as low-cost X servers. Still others run (and
crash) experimental operating systems or application software, and are treated as a pool o f machines
made available to the software developers in either "reserved" or "shared" modes.

In this environment, the tension between autonomy and interdependence is a factor in our daily
decision making. Here are some of the observations (and principles) we have found useful in choosing
practical solutions to autonomy questions:

1. In an environment where at least some of the systems are "dependent" in the sense
defined above, or more interdependent, there will almost always be a set of logically
centralized services that fall into a "must be maintained" category.

t

® The network itself: its internal cabling, repeaters, bridges and gateways.
(It happens that some rather important services live on the other side of
a gateway. The fact that we accept this is testimony to the effectiveness
o f the support environment in keeping the world in good shape.)

• Cluster-root (disc) servers, which need to be up in order to run the
discless workstations

• A (powerful) timesharing machine used as a "home" machine for a
number of users in the group, and as a general computation engine.

Failures o f any of these machines/subsystems are noticed in minutes. And fixed on
similar timescales, too. In practice, this isn't burdensome - our crucial services simply
don't break.

2. Several services can be replicated fairly simply, so MTTRs of a day or so are acceptable.
Examples include name servers; network printers; NFS servers for rarely-used files;
central "batch" software servers (more on this below); and individual discs, workstations
or X window servers that can simply be swapped out for a working machine. Again,
we observe small hardware mortality rates for such machines: the software failures
can typically be handled trivially (e.g. restart), or ignored by accessing another server,
typically automatically.

2

3. A powerful principle that we've applied in several instances is that the "recipient should
be in control". This is most visible in our software update mechanism/policy: every
night, our machines go out to a set of places and get the most recent versions of various
pieces of software, configuration files, etc. (You can think of this as a reverse-rdist: only
the minimum number of updates actually occur.) Since this action is performed by the
clients o f the distribution service, they can choose to pick up the latest updates or not,
as they wish. At its best~ it allows complete system upgrades (of scale comparable to
moving from 4.1BSD to 4.3BSD) to be completed across the network in less time than
it would take to mount and unload the tapes, and keeping all the local customizations
in place.

We take this principle still further: the installation process for the system by which this
is all performed is itself installed the same way (once the installation program has been
acquired). That software can itself be locally customized to accept or reject particular
portions of the updates, leaving a great deal o f control in the hands of the local machine
owner. (In our case, "shared" machines get everything, but a few individuals choose
that "their" workstations suppress some of the services made available this way.)

This class of service is in the "batch mode" category: it doesn't matter if an update fails
one night. At worst it can be run manually the next morning, but in practice it gets
done automatically the next evening, and nobody minds.

4. We have found that a hierarchical delegation of autonomy is a very. useful concept. In
our current (experimental) implementation, we have three levels:

• s t a , d a r d , which we expect (and make) completely non-controversial,
so that it can be disseminated to a very wide user community (typically
200+) without compunction or nervousness on their part:

• g r o , p , which is an agreed-upon set o f additional functions or choices
appropriate to a particular work group (in our case, this coincides with
the union of two organizational entities):

• local, on a per-machine basis.

All the software that is distributed uses the union of the information in the s l a , d a r d ,

groztp, and local classifications in some application-specific way. Sometimes this is sim-
ple: the nightly installation process constructs a n / e t c / p r i n t c a p file from the concate-
nation of the three components. Sometimes more careful processing is required, as in
the pattern matching rules used to select access rules for remote resource usage on the
local machine, or the selection and filtering process for the files to be backed up across
the network. Application-specific defaults handle cases where one or more of the three
components is missing or has been deleted.

Obviously, this could be trivially extended to an arbitrary depth.

5. Local hosts can (and do) choose to protect themselves~gainst mistakes that get prop-
agated via the installation process, and refuse to accept the update. For example, our
"group" server machine needs to stay up with very high probability, so takes care to
reject suspicious-looking updates to important system components. (For example, if
certain files shrink by more than a certain fraction of their previous length, it requests
human assistance instead of accepting them.)

6. Social pressures are surprisingly effective mechanisms to achieve a comfortable steady
state (once somebody abuses something in a large user community, they never do it

again!). Honest errors and teething troubles are the commonest (only?) causes of prob-
lems for us. This typically happens when new people are first exposed to the (rather
complex because rather functional) environment in which we work. This means that
autonomy as a protection mechanism against accidental damage is useful, but it seems
to be unnecessary (at least with our user community) to adopt a more paranoid stance.

Conclusion
In conclusion, we feel that the degree of autonomy or interdependence considered desirable is largely
a social, political and budgetary question. In our experience, desirable design points include a range of
options, tailored to individual or group needs, and provision of a range of alternatives can be accom-
modated quite easily with uniform adoption of a few key principles. This workshop looks to be a good
opportunity to share a few of these in greater detail, and to learn more about design issues for other
environ ments.

Hewletl-Packard Laboratories
1501 Page Mill Road
P.O. Box 10490
Paid Altoo Ca 94303-0971
Tel: +1 415 857 3568

