
DataMesh, house-building, and distributed systems
technology
Position paper for 5th ACM SIGOPS European Workshop

John Wilkes
wilkes @ hpl.hp, com

Concurrent Systems Project
Hewlett-Packard Laboratories

15 April 1992

1 System design reconsidered as
architecture
The past several years have shown a steady increase in
knowledge about building (distributed) computer
systems. Techniques like (L)RPC, scheduler activations,
(relatively) machine-independent memory
management, ordering and causality, and distributed
caching and consistency protocols have developed to the
point where we have a useful array of tools at our
disposal. There are doubtless many improvements still
to be made in such techniques: more tools will be
developed, existing ones will be sharpened. But the
biggest opportunity available to us is in learning how to
apply the tools we have.

Consider the analogy of a distributed computer system
as an ensemble of buildings. Rooms might represent
address spaces; their occupants, threads; buildings the
nodes of the distributed system.

RPC systems are like sending paper messages from one
building to another by postman (on roller skates, for the
faster ones). Networking technology has developed
smooth, straight paths between buildings, plus a
structure of intersections that mean that the entire
complex doesn't have to be paved over, but the handoff
between the postman and the building inhabitants still
leaves much to be desired: we still struggle through
multi-ported airlocks, and an army ofintermediaries.

Causality and ordering mechanisms use audit trails on
the pieces of paper sent between rooms to determine
when to deliver a new one to the occupants of a room.
Just like in the real world there is a team of people busy
installing new sewer systems, power lines, and
roadways between the buildings: with commendable
enthusiasm they sever communication paths, and
disable entire buildings by putting pickaxes through a
power line, and generally cause mayhem for the
inhabitants--all in the name of progress, of course!

So far we (the distributed OS community) have been
concentrating almost exclusively on the construction of
ever-better building components, without attending
with due diligence to the architecture of the whole or
even the makeup of some of the individual buildings.

We have assembled an impressive set of components,
but as yet relatively little guidance on how to apply
them: there are precious few cohesive schools of
architecture, or even plans for buildings that perform
specific tasks well. Rather, we have concentrated on
giving our doorways Teflon linings; on embellishing the
decoration around the window panes; and insisting that
all the rooms are fitted with precisely the same set of
amenities. And recently, we've been trying to propose
that every building should be constructed as a single
floor of identical rooms without doors, situated on top of
a tiny cramped basement (a microkernel).

The time has come to develop--and publicize more
endeavors that stretch the architects" art, rather than the
plumbers'.

We all do architecture to some degree: the thrust of this
proposal is that we should work harder as a community
to discuss and describe the good and the bad, so that we
can all improve. We've got a very good set of tools and
components for constructing distributed systems, but
not enough guidance on applying them.

2 Dedicated buildings and systems
One architectural technique that has received
insufficient support in the systems arena is the art of
building for a purpose: developing a design (based on
standard components, but extending them where
needed) that is much better at performing a particular
function than a general-purpose design could be. A
railway station isn't the same kind of building as a
housing complex--and a single desiRn that tried to
accommodate both would be unlikely to be successful

2 ACM SIGOPS European Workshop position paper

In the distributed systems arena, we are well placed to
exploit this specialization: our buildings (computers) are
connected only by reiatively narrow pathways
(networks), and the internal construction of any one
building is not visible to the outside. This freedom is
relatively new: combined with the increases in
understanding about individual components of
distributed systems technology, we have an
unparalleled opportunity to develop even exploit--
this in ways that will provide better (faster, more
scalable, more fault-tolerant) systems.

Fortunately, computer systems are not buildings: they
don't have to be hand-crafted for each individual use
and plot of land on which they must sit. Instead, a
relatively few general designs can serve the needs of a
range of needs.

The rest of this position paper is devoted to an overview
of one such specialized design--itself a distributed
system. Although there are interesting advances in the
technology of individual components, the emphasis
here will be on the manner in which the existing
knowledge in distributed systems is being applied to the
overall approach.

3 The DataMesh storage system
In many computer systems, a significant amount of
system resources are taken up with storing and
retrieving data from persistent memories---disks,
tertiary storage, and so on. Recent improvements in
networking (such as gigabit-speed links) make it
possible to offload storage management to a specialized
server, and we believe that by doing so much better
performance can be achieved than would otherwise be
the case.

Our target environment is a shared storage server for a
collection of clients--perhaps workstations, perhaps
nodes in a parallel database or computation engine. Our
goal is to develop a system storage architecture to
provide high performance, high availability, scalability
(in both size and component type), and standards-based
connections to the open systems environment. We
believe that these requirements in turn suggest
particular architectural solutions:

• high performance: the use of parallelism and the close
coupling of processor power with storage elements;

• h(;fh availability: no single points of failure (i.e., there
must be built-in redundancy), coupled with fault
tolerant software;

• scalability and long life: a modular architecture, to
allow a DataMesh server to expand and adapt to
changing requirements over time, with smooth
incremental growth;

• d~erent kinds of storage service: internally specialized
components that allow mixing and matching of

parts to achieve the right balance for a particular
application configuration;

• open systems interconnection: the ability for a
DataMesh server to be attached to the outside world
through several hardware and software
interconnect standards.

The themes explored in the discussion that follows are
three-fold: applying the theme of internal diversity for
flexibility at many different levels in the DataMesh
architecture; application of a set of existing distributed
systems techniques; and extending some of these as a
result of architectural considerations.

3.1 Internal diversity

In contrast to those who believe in general-purpose
solutions for all eventualities, we believe that "divide
and conquer" is an important technique--indeed, the
very notion of specialized systems being espoused here
is one instance of this approach. We carry this principle
into the design of the DataMesh itself.

For example, we don't believe that a file system
designed for small objects with clustered accesses to
them (such as a 4.2BSD file system) is appropriate for
storing multimedia objects with strict performance
constraints on bandwidth and timeliness. Nor do we
believe that everybody needs exactly the same degree of
reliability or availability for their data--and cost and
performance tradeoffs can usefully be made to exploit
these differences.

We reflect this diversity in many ways: in the specialized
hardware nodes in a DataMesh; in the overall system
architecture (Jungle), which is a framework for
providing a multitude of different design alternatives; in
the differentiation of functions within even the lowest
logical layer of the Jungle framework (virtual devices);
in a variety of different policies that implement those
design alternatives.

Our chosen hardware solution is an array of nodes of
various types (Figure 1):

• port nodes provide connectivity to the outside world
through I /O interfaces like SCSI, or LANs like FDDI;

~ ~ fast, reliable interconnect I

Disk module RAM module LAN module

Figure 1. DataMesh system hardware model.

ACM SIGOPS European Workshop position paper 3

® disk nodes provide secondary storage;

. RAM nodes (volatile or non-volatile) are used for data
and metadata caching, read-ahead, and write-
behind;

• and tertiary storage nodes allow expansion to high
total capacity at low cost (e.g., an optical jukebox, R-
DAT tape, or robot tape library).

All the nodes are linked by a fast, reliable, small-area
network that is internal to the DataMesh--and can thus
be specialized for low latency and high bandwidth
without the compromises necessitated for local area
networks. The whole ensemble is programmeC so that it
appears as a single storage server to its external clients.

An orthogonal specialization occurs in the overall
software architecture for DataMesh--which is called
Jungle. The lowest Jungle level is a smart chunk store, or
set of virtual devices. These hold raw bags of bytes, on top
of which there is a layer of chunk vector managers that
Frovide an abstraction composed of sequences of
chunks. Finally, there is a layer of Jungle-thing access
managers (JTAMs) that provide application- and system-
specific interfaces to the stored data.

l 'hese layers are separate to allow for different
implementations and policies to be applied at each layer.
For example, multiple JTAMs may make use of a single
kind of chunk vector; and different chunk vector
implementations will exist for different performance
tradeoffs (short random I /O versus highly predictable
sequential transfers, for example).

Jungle software will run on both DataMesh server and
client nodes; distributed cache management will
concern itself with system-wide memory management,
balancing alternate needs. We are thinking of
experimenting with a variety of competitive memory
economies [Waldspurger92] to achieve this.

Our programming model follows that of the proxies of
[Shapiro86]: any access to an object is through a local
copy of the manager code. Although this may sound a
little extreme at first sight, we also allow the local
manager code to be but a shadow of the real thing--for
example, a stub (with or without some local caching),
that just forwards all requests to a remote copy of the full
manager code.

3.2 Scalability and performance

The Jungle framework is a very high-level structure. A
more detailed and concrete example of our use of
internal diversity is provided by the first phase of the
Data_Mesh work, which is concentrating on storage
servers that support operations on fixed-size blocks of
data. This inter/ace corresponds almost exactly to the
Jtmgle virtual device layer; for prototyping purposes,
we have chosen to test our work by making the interface

accessible through SCSI connections that emulate
regular disk drives (plus a few extensions).

There are two conflicting needs here: scalability to large
numbers of nodes, and the need to maintain moderate
amounts of fast-changing state to extract the maximum
performance from the disk nodes. The former is a result
of our desires to design a system capable of scaling up to
a couple of hundred disk drives. The latter is a
consequence of our indirect-disk technology, which
provides very fast writes---at the cost of an indirection
table held in RAM that is updated on every write
[English92]. Unfortunately, the two needs are at odds
with one another: no single general-purpose technique
can do both efficiently.

The architectural solution we have adopted is (once
again) to specialize: we layer the problem into distinct
components (see Figure 2), and apply well-known
techniques at each to achieve both our objectives.

Multiple hosts can be connected to a single DataMesh
through one or more ports (e.g., SCSI channels, gigabit
links). Port-level communications are managed by spigot
software channel striping and routing is done here. An
incoming request is passed on to a dealer, which uses
static partitioning policies (so it can operate at high
speed) to disperse it across one or more decks. The decks
do dynamic load balancing, and hold Loge indirection
tables. Finally, data is stored on cards, which contain
embedded disks and perform rotation-based placement
optimizations.

By making dealers responsible for static load balancing
(we use hashing, loosely based on the style of the
VAXcluster lock manager) [Kronenberg87], we are able
to make a system scale to large numbers of nodes
without requiring dealer-to-dealer communication. On
the other hand, the state information in the decks allows

D a t a M e s h I se rver
. - . - - . . . - . - . - . - - . - . . . - . - , , , . - . , , • - . . . - , - , - . . , - . - . - - . - .

Port nodes + Dealer;
spigot software :
communication

•
Cards:

~tatic \Decks: dynamic
load balancing load balancing

Figure 2. DataMesh phase 1 '.ogical architecture.

4 ACM SIGOPS European Workshop position paper

to make dynamic performance optimizations across a
much smaller number of disks--and our simulations
suggest that most of this type of benefit is to be had from
a half dozen or so devices.

3.3 Causality extended to disk data
The state information in the decks gives us considerable
performance advantages; however, it is also a potential
point of failure so it is important that mechanisms exist
to rebuild it if something goes wrong. Driven by this
architectural need, we extended the Loge disk
technology to greatly improve the recovery and fault-
tolerance properties provided. We did this by exploiting
the shadow-writing nature of Loge disks to extend
causality and ordering right down onto the disk. By
contrast with most existing work has concentrated on
applying these techniques to main-memory data
structures.

We are able, as a result, to offer a great many benefits
that fall out of our ability to reconstruct the ordering of
events. Two powerful examples are the ability to
recovery automatically to consistent on-disk states after
a power failure or crash, and the removal of almost all
synchronous I/Os.

The details of the mechanisms are presented in a
technical report [Chao92]; for now, the important point
is that we have found novel results from applying a
well-understood technology (causality) in a new way as
a result of a higher-level need. This is a direct (and
satisfying!) example of the architectural approach
espoused in this paper.

3.4 Interconnect

A subject dear to the heart of almost any distributed
systems designer is the performance and structure of the
communication layer. We found that our architectural
needs led us to a three-pronged approach: bulk data
traffic for moving data around the system without
looking at it more than absolutely needed; normal rpc
for control interactions; and- -and this seems to be
relatively new- -a low-cost mechanism for performing
performance optimizations.

When a request arrives at a DataMesh, the amount of
time available for deciding what to do is relatively small:
we, budgeted ourselves about 1ms total overhead for
deciding how to handle the query. We expect that one or
more nodes may have copies of (some of) the data, so
we'd like to find these as quickly as possible. If no node
has the data cached in RAM, we'll have to go to disk--
but again, we'd like to do an optimization decision
based on which copy is going to be the fastest to access.

Suppose that we need to probe 10 nodes to find the best
copy of the data, followed by a normal rpc to initiate the
transfer. If we budget 0.3ms for the rpc, that leaves us
0.7ms for the remote probes and other optimization

decisions--or about 50fts total for each probe, once we
allow for a few cycles for the decision-making and
bookkeeping. To achieve this, we had to invent a new
kind of ipc operation: one that gave us a very quick
indication of the cost of accessing a chunk of data. The
price we chose to pay was to allow it to be wrong: i.e., we
exploited the nature of hints that are so useful in
distributed systems. The point here is that such a trade-
off is unlikely to occur spontaneously from a prototol
design effort: it occurred to us because we had a design
in our minds for the larger system.

4 Conclusion
A primary function of a building architect is to
determine the best design to serve the neeC; of the client.
Such designs use many standard components;
engineering and physics determine what can and cannot
be done. But the skill of composition, and the molding of
existing designs to suit the purposes of the client, are
what determines whether or not the architect is
successful, rather than the choice of the very latest kind
of air conditioning system or wall cladding. (Of course,
advances in air conditioning systems may make some
new design easier to build, or reduce a building's cost, so
such technology changes have to be constantly tracked
and exploited--as tools, not as driving forces for
designs.)

This position paper has argued that the distributed
systems field has reached the point where we can (and
should) be increasing the emphasis on the architectural
side of our work. It has further advocated that a suitable
vehicle for doing this is the field of specialized systems,
which are targeted towards performing a few tasks
extremely well. These will prove a much more exciting
arena than the continuing commonality of "general
purpose systems", because the metrics for success are
clearer, the environment more narrowly focussed, and
new technologies easier to test and improve in isolation.
An example of this approach is the DataMesh project,
which is applying much of the known distributed
systems technology to developing a high-performance,
highly functional storage server, with encouraging
results,

References
[Chao92] Chia Chao, Robert English, David Jacobson,

Alex Stepanov and John Wilkes. Mime: a high
performance storage device with strong recovery
guarantees. CSP technical report HPL-CSP-92-9,
Hewlett-Packard Laboratories, March 1992.

[English92] Bob English and Alex Stepanov. Loge a
self-organizing disk controller. Proceedings of Winter
USENIX'92 (San Francisco, CA) Jan. 1992.

ACM SIGOPS European Workshop position paper 5

[Kronenberg87] Nancy P. Kronenberg, Henry M. Levy,
William D. Strecker, and Richard J. Merewood. The
VAXcluster concept: an overview of a distributed
system. Digital Technical]ournal 5:7-21, September
1987.

[Seltzer90] Margo Seizer, Peter Chen and John
Ousterhout. Disk scheduling revisited. In Proceedings
of the Winter 1990 USENIX (Washington, DC), pp. 22-
26 January 1990.

[Shapiro86] Marc Shapiro. Structure and encapsulation
in distributed systems: the proxy principle. In
Proceedings of 6th International Conference on
Distributed Computing Systems (Cambridge, Mass),
pp. 198-204. IEEE Computer Society Press, Catalog
number 86CH22293-9, May 1986.

[Waldspurger92] Carl A. Waldspurger, Tad Hogg,
Bernardo A. Huberman, Jeffrey O. Kephart, and
W. Scott Stornetta. Spawn: a distributed

computational economy. IEEE Transactions on
Software Engineering, 18(2):103-17, February 1992.

[Wilkes89] John Wilkes. DataMesh - - scope and
objectives: a commentary. DSD technical report HPL-
DSD-89-44, Hewlett-Packard Laboratories, July 1989.

[Wilkes91] John Wilkes. DataMesh - - parallel storage
systems for the 1990s. Proceedings of the 11th IEEE
Mass Storage Symposium (Monterey, CA), October
1991.

[Wilkes91a] John Wilkes and Raymie Stata. Specifying
data availability in multi-device file systems. Position
paper for 4th ACM-SIGOPS European Workshop
(Bologna, 3-5 September lq90). Published as
Operating Systems Review 25(1):56-9, January 1991.

