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1 System design reconsidered as 
architecture 
The past several years have shown a steady increase in 
knowledge about building (distributed) computer 
systems. Techniques like (L)RPC, scheduler activations, 
(relatively) machine-independent memory 
management, ordering and causality, and distributed 
caching and consistency protocols have developed to the 
point where we have a useful array of tools at our 
disposal. There are doubtless many improvements still 
to be made in such techniques: more tools will be 
developed, existing ones will be sharpened. But the 
biggest opportunity available to us is in learning how to 
apply the tools we have. 

Consider the analogy of a distributed computer system 
as an ensemble of buildings. Rooms might represent 
address spaces; their occupants, threads; buildings the 
nodes of the distributed system. 

RPC systems are like sending paper messages from one 
building to another by postman (on roller skates, for the 
faster ones). Networking technology has developed 
smooth, straight paths between buildings, plus a 
structure of intersections that mean that the entire 
complex doesn't  have to be paved over, but the handoff 
between the postman and the building inhabitants still 
leaves much to be desired: we still struggle through 
multi-ported airlocks, and an army ofintermediaries. 

Causality and ordering mechanisms use audit trails on 
the pieces of paper sent between rooms to determine 
when to deliver a new one to the occupants of a room. 
Just like in the real world there is a team of people busy 
installing new sewer systems, power lines, and 
roadways between the buildings: with commendable 
enthusiasm they sever communication paths, and 
disable entire buildings by putting pickaxes through a 
power line, and generally cause mayhem for the 
inhabitants--all in the name of progress, of course! 

So far we (the distributed OS community) have been 
concentrating almost exclusively on the construction of 
ever-better building components, without attending 
with due diligence to the architecture of the whole or 
even the makeup of some of the individual buildings. 

We have assembled an impressive set of components, 
but as yet relatively little guidance on how to apply 
them: there are precious few cohesive schools of 
architecture, or even plans for buildings that perform 
specific tasks well. Rather, we have concentrated on 
giving our doorways Teflon linings; on embellishing the 
decoration around the window panes; and insisting that 
all the rooms are fitted with precisely the same set of 
amenities. And recently, we've been trying to propose 
that every building should be constructed as a single 
floor of identical rooms without doors, situated on top of 
a tiny cramped basement (a microkernel). 

The time has come to develop--and publicize more 
endeavors that stretch the architects" art, rather than the 
plumbers'. 

We all do architecture to some degree: the thrust of this 
proposal is that we should work harder as a community 
to discuss and describe the good and the bad, so that we 
can all improve. We've got a very good set of tools and 
components for constructing distributed systems, but 
not enough guidance on applying them. 

2 Dedicated buildings and systems 
One architectural technique that has received 
insufficient support in the systems arena is the art of 
building for a purpose: developing a design (based on 
standard components, but extending them where 
needed) that is much better at performing a particular 
function than a general-purpose design could be. A 
railway station isn't the same kind of building as a 
housing complex--and a single desiRn that tried to 
accommodate both would be unlikely to be successful 
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In the distributed systems arena, we are well placed to 
exploit this specialization: our buildings (computers) are 
connected only by reiatively narrow pathways 
(networks), and the internal construction of any one 
building is not visible to the outside. This freedom is 
relatively new: combined with the increases in 
understanding about individual components of 
distributed systems technology, we have an 
unparalleled opportunity to develop even exploit-- 
this in ways that will provide better (faster, more 
scalable, more fault-tolerant) systems. 

Fortunately, computer systems are not buildings: they 
don't have to be hand-crafted for each individual use 
and plot of land on which they must sit. Instead, a 
relatively few general designs can serve the needs of a 
range of needs. 

The rest of this position paper is devoted to an overview 
of one such specialized design--itself a distributed 
system. Although there are interesting advances in the 
technology of individual components, the emphasis 
here will be on the manner in which the existing 
knowledge in distributed systems is being applied to the 
overall approach. 

3 The DataMesh storage system 
In many computer systems, a significant amount of 
system resources are taken up with storing and 
retrieving data from persistent memories---disks, 
tertiary storage, and so on. Recent improvements in 
networking (such as gigabit-speed links) make it 
possible to offload storage management to a specialized 
server, and we believe that by doing so much better 
performance can be achieved than would otherwise be 
the case. 

Our target environment is a shared storage server for a 
collection of clients--perhaps workstations, perhaps 
nodes in a parallel database or computation engine. Our 
goal is to develop a system storage architecture to 
provide high performance, high availability, scalability 
(in both size and component type), and standards-based 
connections to the open systems environment. We 
believe that these requirements in turn suggest 
particular architectural solutions: 

• high performance: the use of parallelism and the close 
coupling of processor power with storage elements; 

• h(;fh availability: no single points of failure (i.e., there 
must be built-in redundancy), coupled with fault 
tolerant software; 

• scalability and long life: a modular architecture, to 
allow a DataMesh server to expand and adapt to 
changing requirements over time, with smooth 
incremental growth; 

• d~erent kinds of storage service: internally specialized 
components that allow mixing and matching of 

parts to achieve the right balance for a particular 
application configuration; 

• open systems interconnection: the ability for a 
DataMesh server to be attached to the outside world 
through several hardware and software 
interconnect standards. 

The themes explored in the discussion that follows are 
three-fold: applying the theme of internal diversity for 
flexibility at many different levels in the DataMesh 
architecture; application of a set of existing distributed 
systems techniques; and extending some of these as a 
result of architectural considerations. 

3.1 Internal diversity 

In contrast to those who believe in general-purpose 
solutions for all eventualities, we believe that "divide 
and conquer" is an important technique--indeed, the 
very notion of specialized systems being espoused here 
is one instance of this approach. We carry this principle 
into the design of the DataMesh itself. 

For example, we don't  believe that a file system 
designed for small objects with clustered accesses to 
them (such as a 4.2BSD file system) is appropriate for 
storing multimedia objects with strict performance 
constraints on bandwidth and timeliness. Nor do we 
believe that everybody needs exactly the same degree of 
reliability or availability for their data--and cost and 
performance tradeoffs can usefully be made to exploit 
these differences. 

We reflect this diversity in many ways: in the specialized 
hardware nodes in a DataMesh; in the overall system 
architecture (Jungle), which is a framework for 
providing a multitude of different design alternatives; in 
the differentiation of functions within even the lowest 
logical layer of the Jungle framework (virtual devices); 
in a variety of different policies that implement those 
design alternatives. 

Our chosen hardware solution is an array of nodes of 
various types (Figure 1): 

• port nodes provide connectivity to the outside world 
through I /O  interfaces like SCSI, or LANs like FDDI; 

~ ~  fast, reliable interconnect I 

Disk module RAM module LAN module 

Figure 1. DataMesh system hardware model. 



ACM SIGOPS European Workshop position paper 3 

® disk nodes provide secondary storage; 

. RAM nodes (volatile or non-volatile) are used for data 
and metadata caching, read-ahead, and write- 
behind; 

• and tertiary storage nodes allow expansion to high 
total capacity at low cost (e.g., an optical jukebox, R- 
DAT tape, or robot tape library). 

All the nodes are linked by a fast, reliable, small-area 
network that is internal to the DataMesh--and can thus 
be specialized for low latency and high bandwidth 
without the compromises necessitated for local area 
networks. The whole ensemble is programmeC so that it 
appears as a single storage server to its external clients. 

An orthogonal specialization occurs in the overall 
software architecture for DataMesh--which is called 
Jungle. The lowest Jungle level is a smart chunk store, or 
set of virtual devices. These hold raw bags of bytes, on top 
of which there is a layer of chunk vector managers that 
Frovide an abstraction composed of sequences of 
chunks. Finally, there is a layer of Jungle-thing access 
managers (JTAMs) that provide application- and system- 
specific interfaces to the stored data. 

l 'hese layers are separate to allow for different 
implementations and policies to be applied at each layer. 
For example, multiple JTAMs may make use of a single 
kind of chunk vector; and different chunk vector 
implementations will exist for different performance 
tradeoffs (short random I /O versus highly predictable 
sequential transfers, for example). 

Jungle software will run on both DataMesh server and 
client nodes; distributed cache management will 
concern itself with system-wide memory  management, 
balancing alternate needs. We are thinking of 
experimenting with a variety of competitive memory 
economies [Waldspurger92] to achieve this. 

Our programming model follows that of the proxies of 
[Shapiro86]: any access to an object is through a local 
copy of the manager code. Although this may sound a 
little extreme at first sight, we also allow the local 
manager code to be but a shadow of the real thing--for 
example, a stub (with or without some local caching), 
that just forwards all requests to a remote copy of the full 
manager code. 

3.2 Scalability and performance 

The Jungle framework is a very high-level structure. A 
more detailed and concrete example of our use of 
internal diversity is provided by the first phase of the 
Data_Mesh work, which is concentrating on storage 
servers that support operations on fixed-size blocks of 
data. This inter/ace corresponds almost exactly to the 
Jtmgle virtual device layer; for prototyping purposes, 
we have chosen to test our work by making the interface 

accessible through SCSI connections that emulate 
regular disk drives (plus a few extensions). 

There are two conflicting needs here: scalability to large 
numbers of nodes, and the need to maintain moderate 
amounts of fast-changing state to extract the maximum 
performance from the disk nodes. The former is a result 
of our desires to design a system capable of scaling up to 
a couple of hundred disk drives. The latter is a 
consequence of our indirect-disk technology, which 
provides very fast writes---at the cost of an indirection 
table held in RAM that is updated on every write 
[English92]. Unfortunately, the two needs are at odds 
with one another: no single general-purpose technique 
can do both efficiently. 

The architectural solution we have adopted is (once 
again) to specialize: we layer the problem into distinct 
components (see Figure 2), and apply well-known 
techniques at each to achieve both our objectives. 

Multiple hosts can be connected to a single DataMesh 
through one or more ports (e.g., SCSI channels, gigabit 
links). Port-level communications are managed by spigot 
software channel striping and routing is done here. An 
incoming request is passed on to a dealer, which uses 
static partitioning policies (so it can operate at high 
speed) to disperse it across one or more decks. The decks 
do dynamic load balancing, and hold Loge indirection 
tables. Finally, data is stored on cards, which contain 
embedded disks and perform rotation-based placement 
optimizations. 

By making dealers responsible for static load balancing 
(we use hashing, loosely based on the style of the 
VAXcluster lock manager) [Kronenberg87], we are able 
to make a system scale to large numbers of nodes 
without requiring dealer-to-dealer communication. On 
the other hand, the state information in the decks allows 

D a t a M e s h  I se rver  
. . . . . . . . . . . . . . . . . . . . - . - . . . . . . . . . . . . . - . . . - . - . - . - . . . . . - . - . . . - . - . . . . . . . . . . . . , , , . - . , , . . . . .  • - . . . - , -  , . . . . . - . . , - . - . - . . . . . . . - . - .  

Port nodes + Dealer; 
spigot software : 
communication 

• 
Cards: 

~tatic \Decks: dynamic 
load balancing load balancing 

Figure 2. DataMesh phase 1 '.ogical architecture. 
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to make dynamic performance optimizations across a 
much smaller number of disks--and our simulations 
suggest that most of this type of benefit is to be had from 
a half dozen or so devices. 

3.3 Causality extended to disk data 
The state information in the decks gives us considerable 
performance advantages; however, it is also a potential 
point of failure so it is important that mechanisms exist 
to rebuild it if something goes wrong. Driven by this 
architectural need, we extended the Loge disk 
technology to greatly improve the recovery and fault- 
tolerance properties provided. We did this by exploiting 
the shadow-writing nature of Loge disks to extend 
causality and ordering right down onto the disk. By 
contrast with most existing work has concentrated on 
applying these techniques to main-memory data 
structures. 

We are able, as a result, to offer a great many benefits 
that fall out of our ability to reconstruct the ordering of 
events. Two powerful examples are the ability to 
recovery automatically to consistent on-disk states after 
a power failure or crash, and the removal of almost all 
synchronous I/Os. 

The details of the mechanisms are presented in a 
technical report [Chao92]; for now, the important point 
is that we have found novel results from applying a 
well-understood technology (causality) in a new way as 
a result of a higher-level need. This is a direct (and 
satisfying!) example of the architectural approach 
espoused in this paper. 

3.4 Interconnect 

A subject dear to the heart of almost any distributed 
systems designer is the performance and structure of the 
communication layer. We found that our architectural 
needs led us to a three-pronged approach: bulk data 
traffic for moving data around the system without 
looking at it more than absolutely needed; normal rpc 
for control interactions; and- -and  this seems to be 
relatively new- -a  low-cost mechanism for performing 
performance optimizations. 

When a request arrives at a DataMesh, the amount of 
time available for deciding what  to do is relatively small: 
we, budgeted ourselves about 1ms total overhead for 
deciding how to handle the query. We expect that one or 
more nodes may have copies of (some of) the data, so 
we'd like to find these as quickly as possible. If no node 
has the data cached in RAM, we'll have to go to disk--  
but again, we'd like to do an optimization decision 
based on which copy is going to be the fastest to access. 

Suppose that we need to probe 10 nodes to find the best 
copy of the data, followed by a normal rpc to initiate the 
transfer. If we budget 0.3ms for the rpc, that leaves us 
0.7ms for the remote probes and other optimization 

decisions--or about 50fts total for each probe, once we 
allow for a few cycles for the decision-making and 
bookkeeping. To achieve this, we had to invent a new 
kind of ipc operation: one that gave us a very quick 
indication of the cost of accessing a chunk of data. The 
price we chose to pay was to allow it to be wrong: i.e., we 
exploited the nature of hints that are so useful in 
distributed systems. The point here is that such a trade- 
off is unlikely to occur spontaneously from a prototol 
design effort: it occurred to us because we had a design 
in our minds for the larger system. 

4 Conclusion 
A primary function of a building architect is to 
determine the best design to serve the neeC; of the client. 
Such designs use many standard components; 
engineering and physics determine what  can and cannot 
be done. But the skill of composition, and the molding of 
existing designs to suit the purposes of the client, are 
what determines whether or not the architect is 
successful, rather than the choice of the very latest kind 
of air conditioning system or wall cladding. (Of course, 
advances in air conditioning systems may make some 
new design easier to build, or reduce a building's cost, so 
such technology changes have to be constantly tracked 
and exploited--as tools, not as driving forces for 
designs.) 

This position paper has argued that the distributed 
systems field has reached the point where we can (and 
should) be increasing the emphasis on the architectural 
side of our work. It has further advocated that a suitable 
vehicle for doing this is the field of specialized systems, 
which are targeted towards performing a few tasks 
extremely well. These will prove a much more exciting 
arena than the continuing commonality of "general 
purpose systems", because the metrics for success are 
clearer, the environment more narrowly focussed, and 
new technologies easier to test and improve in isolation. 
An example of this approach is the DataMesh project, 
which is applying much of the known distributed 
systems technology to developing a high-performance, 
highly functional storage server, with encouraging 
results, 
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