
Better mousetraps
John Wilkes
Hewlett-Packard Laboratories, Palo Alto, CA
Position paper for the 1994 ACM SIGOPS European Workshop on
"Matching operating systems to application needs"

As a technologist, working in the field of storage
systems, and employed by a company that
develops and sells a wide range of computer
systems and components, I've learned that the
biggest impediments to technology transfer--
including better OS support for specific
applications--are not technical, but economic. This
paper summarizes some of these issues, and
considers how best we might respond to them.

1 How did we get where we are today?
Applications can be divided into three rough
classes:

1. technology-limited: where we simply do not
have solutions that work well at acceptable cost
(e.g., "grand challenges", portable digital
assistants (PDAs) with problematic battery-
weight-to-power ratios}.

2. price-limited: solutions exist, but their cost is
such that better price-performance is a
competitive advantage. The application that
determines the size of a system that a customer
needs to buy is usually in this category.

3. well-served: most applications have needs that
are modest enough to be met by the standard
services.

1.10S development is an economic endeavour
Developing operating systems, like developing
applications, is an expensive business. A better OS
is just one of many opportunities in which a
company can invest.

Since most commercial OS vendors are driven by
business needs, not technology availability, there is
pressure to maximize the size of the well-served
application set. This often results in trade-offs that
would appear non-optimal from a purely technical
standpoint. For example, leaving the database
writer's job a little harder for a little longer to let a

new application be supported has often been a
good business trade-off.

Occasional forays are also made into satisfying the
needs of the price-limited applications for
sufficiently lucrative sales opportunities. (For
example, fast locking primitives to support a
popular third-party database.)

Of course, this three-way problem division is
subject to all sorts of assumptions and caveats. For
example, not all users put the same value on their
applications, or have the same amount of money to
spend. Consequently, an application that may be
considered weU-served in one environment may
fall into the price-limited class for another. This also
makes the job of providing a single OS across a
wide hardware range much harder: engineering for
high-end needs costs the users at the low end
more---both in terms of development costs and
(often) runtirne overheads such as memory
requirements.

Until there is economic benefit from supplying a
feature, there is no incentive for providing it. Only
once this gap has been crossed do technical issues
such as the quality and cost of the solution matter.

1.2 Concurrent changes are hard
Both the OS and the applications have to change
before any benefit is obtained from changing the
abstractions at the OS--application boundary. This
makes it hard for commercial enterprises that do
not control the code on both sides of the interface to
make what seem like obvious, desirable
improvements.

For example, OS-specific optimizations are hard to
justify for a database vendor that is trying hard to
keep their product portable across a wide range of
platforms. At the same time, the OS vendors are
also trying to keep multiple database vendors
happy: again, each investment has only a limited

99
92

return because it is only applicable to a subset of the
market for the OS.

1.3 Despite technology advances,
price/performance still matters
In a world where people pay real money for
solutions to their problems, there are commercial
advantages to being able to provide the same
solution for less money (all other things being
equal, of course!). This translates into a need to
continue to pursue p r ice /per formance
improvements, despite enormous progress on the
underlying hardware.

Some applications are so driven by specialized
requirements that dedicated OS support is accepted
as a necessary cost. For example, in a video-on-
demand server, the disk costs dominate the server
cost, so maximizing disk utilization is an
overriding concern.

Because of this, divide-and-conquer specialization
is going to grow in importance: the "one size fits
all" approach cannot effectively be applied to an
ever-widening range of problems. Fortunately,
dedicated servers in a network are an ideal delivery
vehicle for this specialization.

1.4 Abstractions limit control
Abstractions (interfaces) have to balance expressive
power (control) and ease of use (simplicity). A good
solution for the well-served class of applications
may be a poor one for particular price-performance
limited ones.

Consider the switch between IBM's os /360-s tyle
file-access primitives and those of the UNIX
system. The first of these is an abstraction of the
physical storage devices that used to be directly
visible to applications. But once systems got
sufficiently faster that many applications did not
need such control, coupled with the technical
innovation of a buffering file system, we were able
to move to the byte-stream abstraction. Databases
have been coping with the resulting loss of control
ever since.

[Keppe193] has a nice analysis of this issue.

2 How should we respond?
As a group of computer scientists, we can help with
technology development; deployment requires
more, and is what distinguishes our field from a
pure science. Here are a few aphorisms we can live
by during this process, driven by the economics-
based observations above.

• OS research should better support specialized
systems

No one OS vendor (or even OS) can afford to
support all the functions needed from tomorrow's
applications. Trying to do so using current
structuring techniques will only add to the bloat.

In these circumstances, an OS that allows a vendor
or customer to configure a system to meet a
particular need is the way to go. The more easily
configured, and the more effective the
configuration changes, the more advantage will
such systems have. To be able cover a wide range of
application needs, some defined framework has to
be developed and built on (e.g., [Campbell92,
Wilkes93]).

• The purpose of operating systems is resource
multiplexing, not code sharing

Successful specialization across a wide range of
needs requires a much more minimalist approach
to the base framework than has been taken by most
"microkernel" efforts to date. We need to revisit this
issue now that context-switches can be done in a
few microseconds or less.

• Use declarative specifications

The number and range of specifications that will
have to be supported continues to grow. The best
(maybe only) way to handle this is to give
applications a way to express their requirements in
a declarative form (e.g., [Gelb89, Wilkes91]).

This has several benefits: it leaves much greater
freedom for the underlying services than does an
imperative implementation of a policy; it separates
the "extras" from the basic functional interface,
allowing each to be simpler ([Keppe193] refers to
this as the meta-control approach); and it
concentrates the application writer on precise
specifications of their needs.

• Augment declarative specifications with adaptive
techniques

Having an (OS) implementation adapt its behavior
as a function of the observed access patterns to it is
a powerful technique. It relies on the past being a
good predictor of the future, but this seems to be
true surprisingly often.

• Requirements are not optional

Finally, we do have to develop and refine some new
abstractions. Adaptability is a powerful tool for
adding performance while keeping an interface
unchanged, but nothing involving guarantees can
be deduced after the fact--in particular availability,

93

predictability (realtime), and bandwidth needs.
These must all be specified in advance.

With suitable information, today's machines are
quite capable of meeting these needs, but our
abstractions are failing us: having occasional high-
bandwidth disk access is not the same as a
guaranteed-rate display of a video stream.

What we are witnessing today is the shaking out of
the essential requirements from the "optional"
ones. It is being complicated by the concurrent
emergence of new technology such as Gbit/s
networks, which will go a long way to simplifying
the implementations of such facilities. (In fact, the
new "enabling" technologies are causing some
confusion, as people sometimes forget the
differences between guarantees and mere speed.)

3 Conclusion
My own field is storage subsystem design, with
particular interest in a number of specialized
applications (OLTP, video-on-demand), as well as
for general-purpose computing. The approaches
described in this position paper are all proving
useful in reducing the costs of providing good
solutions for both kinds of application--and hence
increasing the utility of those solutions to
customers.

The impact of a workshop like this one could well
spread beyond the immediate participants if it can
help propagate such approaches, in addition to
identifying new technologies.

Acknowledgment
Richard Golding provided much helpful feedback
on this paper, and introduced me to the work of
David Keppel.

References
[Campbell92] Roy H. Campbell, Nayeen Islam, and

Peter Madany. Choices, frameworks and
refinement. Computing Systems 5(3):217-258,
Summer 1992.

[Gelb89] J. P. Gelb. System managed storage. IBM
Systems Journal 28(1):77-103, 1989.

[Keppe193] David Keppel, Susan J. Eggers, and
Robert R. Henry. Evaluating runtime-compiled
value-specific optimizations. Technical report 93-
11-02. Department of Computer Science and
Engineering, University of Washington,
November 1993.

[Wilkes91] John Wilkes and Raymie Stata.
Specifying data availability in multi-device file
systems. Position paper for 4th ACM-SIGOPS
European Workshop (Bologna, 3-5 September
1990). Published as Operating Systems Review
25(1):56-59, January 1991.

[Wilkes93] John Wilkes. DataMesh, house-building,
and distributed systems technology. Proceedings
of 5th ACM SIGOPS European Workshop (Mont
Saint-Michel, France, 21-23 September 1992).
Published as Operating Systems Review 27(2):104--
108, April 1993.

94

