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applications 

Research work in supporting distributed applications has 
traditionally focussed on the dynamic part of their 
interactions--that is, network communication paths. It's our 
belief that although these are important, their very transience 
means that they are much less valuable in the long term than 
the persistent state that these applications manipulate and 
leave behind. Such state can be enormous--tens of terabytes 
are not uncommon for large-scale commercial applications, 
which are frequently constructed from suites of federated, 
distributed applications. Such systems are themselves classic 
examples of a distributed application composed from a set of 
cooperating pieces. As with network communications, the 
persistent storage medium must be well-behaved, in the sense 
of providing predictable behavior, so that applications do not 
interfere with each other. We believe that quality of service 
( QoS) guarantees, and ways to automatically reason about 
resource provision to meet them, is the key to building 
effective and useful storage services. 

1 Introduction 
Composing distributed applications requires media through 
which the composed applications can communicate. Most 
research in this area has focussed on dynamic interactions, 
such as network connections and object invocation. This 
work has resulted in a preliminary understanding of what is 
required for the interactions to work well: things like network 
quality of service (QoS) and compositional correctness 
matter. 

Although dynamic interactions are important, their very 
transience means that they are much less valuable in the long 
term than the persistent state that these applications 
manipulate and leave behind. The persistent storage can be 
provided by a database system, a file system, or a low-level 
storage service--and we are concentrating on the latter. 

Persistent storage is, in our opinion, best provided as a 
general external storage service, rather than as part of other 
specialized services. Building one general system means that 
we can solve many hard problems in one place, rather than re- 
implementing them many times. A general service also 
makes it possible to connect many different kinds of 
applications using it. 

The challenge is to make a general storage service useful. 
This requires that the value of the compositions it enables 

outweighs the costs of using it--including the difficulty of 
writing components that use it, the cost of the hardware 
required, and the cost of maintenance or management while 
it is being used. 

The system must exhibit predictable behavior to meet these 
requirements. It is essential that each component can be built 
without having to reason about the behavior of every other 
component that might be in the system, now or in the future. 
This becomes especially important in large distributed 
systems, where the number of components can amplify small 
application misbehaviors into serious problems. 
Predictability also means that the system needs to be 
continuously available, secure, and incrementally 
expandable. The lack of support for any one of these 
introduces potential exception situations that components 
must account for on their own. 

Our research work focuses on storage systems that provide 
predictable performance, with special emphasis on the 
provisioning of the persistent storage. We emphasize three 
aspects: 

• a well-defined notion of service level to support 
specification and measurement of QoS guarantees, and the 
ability to reason about provisioning to meet them; 

• design and configuration systems to support that 
provisioning; and 

• runtime systems to enforce, measure, and improve it. 

We use abstract, application-specified QoS requirements, 
along with measurements of how they are being met, to drive 
resource allocation decisions. In this way we automate many 
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Figure 1 m a suite of applications communicating through 
persistent storage. 
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of the management activities that are required to use current 
storage systems, thus reducing its cost of use. This also 
insulates application components from the particular 
behaviors of specific devices, and makes the system capable 
of supporting the needs of a wide range of applications. 

We believe that the design, construction, and maintenance of 
such storage services is a complex, difficult problem well 
worthy of attention. From a research perspective, they offer 
exciting challenges in continuous availability; providing hard 
quality of service (QoS) guarantees (and the associated real 
time design issues); coping with enormous scale--both 
physical and logical; handling gradual evolution as its 
component parts are replaced or upgraded. 

Further, we believe that the internals of large-scale storage 
systems are themselves classic examples of a distributed 
application composed from a set of cooperating pieces--and 
a commercially extremely important one at that. 

We discuss some of those research issues in this paper, and 
present the tack we are taking to address them. 

2 A storage service model 
We advocate a simple, well-behaved abstraction based on a 
block-level interface to storage with QoS guarantees. The 
abstraction is simple so that it can be implemented easily 
with good cost and performance. The service is well-behaved 
in the sense that applications negotiate QoS levels for their 
communication with storage, and the service does not allow 
other applications to compromise agreed-upon service levels. 

Figure 3 shows the abstraction. In it, storage is organized into 
virtual stores, large-granularity (several megabytes) chunks 
of byte-addressable storage. Each virtual store has a set of 
QoS requirements attached to it, defining the aggregate 
performance expected of the data, along with reliability, 
security, and capacity requirements. When an application 
goes to use the virtual store, it opens a connection to the 
store, specifying the performance that will be required of the 
particular session. The connection carries a contract, which 
specifies both the performance needed from the storage 
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Figure 2 - -  using QoS requirements and measurements to 
drive and effect provisioning decisions. 

system and the behavior that the application will follow. 
Once a connection has been established, the application 
issues individual read and write requests. 

Virtual stores have limited operational semantics: reading 
and writing blocks of data, with simple, powerful 
consistency and atomicity guarantees when the store is 
concurrently used by multiple hosts. This is the common 
denominator model on which more complex services, such as 
databases or file system, can be built, and it matches the 
semantics provided by storage devices today. We have 
excluded features such as locking and caching, which we 
believe can be better implemented by other system layers. 
We are developing a formal model to specify these semantics 

more exactly. 

Both the virtual store and connection abstractions hide from 
the application the actual resources that are used to provide 
for QoS requirements. This decouples the application from 
details of the storage service, and gives the service the 
freedom to automatically manage resources--which makes 
the provisioning problem tractable, and frees the application 
component designer from device-specific concerns. The 
connection model also provides the basis on which the 
system can ensure non-interference between applications 
using storage: each application need only be concerned about 
its own performance contract with the storage system, and 
not be concerned with the behaviors of other applications or 
with interference from management tasks internal to the 
service. 

The requirements attached to virtual stores and connections 
form a hierarchy. Each individual IO operation is associated 
with a particular connection, and uses resources allocated to 
that connection. The operation is admitted if it falls within 
the application behavior specified in the connection's 
contract. If the operation is outside that behavior, they are 
processed on a best-effort basis, or may be rejected. Likewise 
when a connection is opened, it uses resources allocated to 
the associated store, and is admitted if the aggregate 
performance of all connections to its target store, after adding 
the new connection, is within the overall requirements for the 
store. New connections that do not fit within those 
requirements can be admitted on a best-effort basis--  
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Figure 3 m abstract view of storage interconnection. 
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meaning that the admission will occur if resources can be 
found to support the stream, though once the stream is 
admitted the IO operations in it will get guaranteed 
performance. 

The QoS for a store can specify reliability and security 
aspects as well as just performance. 

3 Our research 

There are many areas that need to be developed in order to 
build a storage service with QoS guarantees. We picked three 
areas to focus our attention on. They are: how to specify QoS 
levels; techniques for reasoning about providing resources to 
meet requested QoS levels; and runtime mechanisms that 
support resource provisioning. 

3.1 Specifying QoS levels 

Connections and stores, in our model, both have QoS 
requirements specified for them. The kinds of requirements 
that can be expressed must be broad enough to cover a wide 
range of applications, simple enough that they can actually 
be determined for real applications by real programmers, and 
specific enough that resource needs can be accurately 
determined. 

We have developed a method of QoS specification that meets  
these needs. In it, applications' QoS levels are expressed as a 
list of named attributes; these can be written in a form like 

{{capacity lOMB} {requestRate 21.5}} 
We separate the static parts of service specification from the 
dynamic part. The static part is true of the data whether or not 
it is being used; this includes attributes such as reliability and 
capacity. The dynamic part specifies how the data will be 
used, and is in turn separated into application behaviors, such 
as request rate and reference locality, and data performance, 
such as latency. 

The dynamic usage of a store varies over time, both in the 
long term as different collections of connections become 
active, and in the short term as the load on a single 
connection varies, perhaps because of burstiness. Meeting 
performance guarantees in this environment is most easily 
done by overprovisioning: allocating enough resources to a 
store or connection that any transient load can be satisfied. 
This, however, often leads to seriously underutilized 
resources when bursts are rare. 

The QoS specification we use provides mechanisms that 
enable efficient resource utilization. The first, phasing, 
addresses long-term behaviors: it indicates what connections 
can be active at the same time, and which cannot. This 
reflects the way many applications go through phases of 
behavior (hence the name). The relationship can be given as 
a probability, in which case the QoS guarantees will be met 
probabilistically. 

The second mechanism addresses short-term behaviors, such 
as bursts. The application behaviors and performance 

expectations can be specified as probability distributions, 
which are in turn used to provide probabilistic performance 
guarantees. 

Our prior work on this area also discusses how device 
capabilities can be specified in a similar way [Borowsky97]. 

There is a final part of our specification that gives 
requirements for the system as a whole rather than for 
individual components. These typically are expressed as goal 
functions that compute a numeric goodness metric from the 
state of the system. Examples include the cost of the system 
and the balance of load across devices. 

To date we have defined a set of QoS attributes that appear to 
model several complex database workloads well. (Note that 
many workloads for which QoS has been  traditionally 
specified--such as continuous media streams--have very 
simple specifications.) We have built tools that semi- 
automatically extract these specifications by measuring a 
running copy of the application. 

3.2 Reasoning about provisioning 

We use requested QoS levels ,  device capabilities, and system 
goals to drive automatic resource allocation (provisioning) 
mechanisms. 

We decided to frame the provisioning problem as a 
constrained optimization problem: determine an assignment 
of  work to devices so that the system-wide objectives, such 
as cost and load balance, are as good as possible while 
respecting the constraints that each store's or connection's 
QoS must be met. This approach has allowed us to use  
standard optimization heuristics based on bin-packing. 

We have had to extend these heuristics in a few ways. First, 
we had to adapt the techniques to work well with a large 
number of constraints, many of which are poorly behaved. 
For example, the response latency for a particular connection 
does not necessarily increase when more work is added to a 
disk. Second, we are adapting some standard heuristics to 
handle on-line resource allocation, especially that caused by 
incremental changes in the system or workload. Finally, we 
are investigating how to make the heuristics scale well up to 
the sizes needed for petabyte-scale storage services. 

We have produced a static capacity-planning tool, and 
demonstrated that it can configure systems as well as humans 
can, and in a small fraction of the time. Experiments have 
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shown that the configured systems properly provide enough 
resources to each application to meet performance 
requirements, and that even slight decreases in resources 
allocated degrade application performance below the 
specified levels, which argues that we are getting good 
allocations. We also have preliminary heuristics for handling 
on-line resource allocation and scaling--though much 
remains to be done. 

3.3 Runtime support 

We use runtime support mechanisms to effect the 
provisioning decisions made by the optimization engine. 

There are two separate parts to the runtime support, as shown 
in Figure 5. One part consists of the access path from the 
application to storage devices, and the second are the 
management services, including the optimization engine. 
The management services make provisioning decisions and 
record them in layout metadata; the access path uses the 
metadata to determine what resources to use in processing an 
IO request. The hosts use an optimistic cache coherence 
mechanism, based on version tags, to ensure that they are 
using accurate metadata even while the management services 
are migating data from device to device. 

Another way to look at this separation of concerns is that the 
management services implements admission control and 
resource allocation policies for stores and connections, while 
the rest of the access path handles only individual requests. 
This means that the access path is concerned with scheduling 
requests, enforcing the behavior that the application has 
stated it will follow, and enforcing security. 

The management services include the optimization engine, a 
migration engine, and a metadata repository. The 
optimization engine makes decisions about what resources 
should be allocated to different stores. These decisions are 
expressed as requests to the migration engine, which 
determines when to execute these requests. When the 
migration engine determines that a connection from one 
device to another can be admitted without interfering with 
other guarantees, it arranges for the two devices to 
communicate directly to rearrange data. The metadata 
repository keeps track of the actual current state of the 
system, including the transient state as data is being copied. 
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The optimization engine and migration engine are 
lightweight and distributed: parts can fail and restart without 
loss of accuracy or function. The metadata repository, on the 
other hand, is stateful, and so it is highly replicated for fault 
tolerance and scalability, using standard replication, 
commitment, and failure suspicion protocols. 

The access path includes the host-side virtualization layer, 
which uses and caches metadata that it gets from the 
metadata repository to map virtual store address onto chunk 
addresses; the network, which provides high-speed, flow- 
controlled data movement, borrowing from work including 
Hamlyn, VIA, and disk-directed IO; and the storage device, 
which is a disk or disk array, but with a smart device interface 
that provides scheduling mechanisms to support QoS 
requirements and support for cross-device update atomicity. 

There is a third part to the runtime system not shown in 
Figure 5: the feedback loop by which devices and host 
inform the management services about important events that 
it should react to. 

4 Distributed storage as a composed 
application 
The components in our system--the parts of the management 
services, plus hosts and storage devices--are composed to 
form .the overall system. The composition is achieved using 
a few basic services. 

Network communication. They use a connection-oriented 
transport that provides QoS guarantees, and layer higher- 
level flow-control and presentation protocols on top of it. 

Transactions and atomic commitment. Resources must be 
allocated in a fault-tolerant way. The metadata repository 
must likewise support agreement among multiple replicated 
copies. We are building these high-level activities on top of a 
simple transaction mechanism, which uses a distributed 
atomic commit protocol internally. 

Failure detection. The atomic commit protocol, among other 
things, is built in turn upon a failure detection (actually 
suspicion) mechanism. 

Loosely-synchronized clocks. We use timestamps throughout 
the system to allow components to reason about temporal 
relationships among events. 

Cache coherence. Each host caches a copy of the metadata it 
needs, as mentioned earlier. The data can be moved on the fly, 
however, and so we are using an optimistic cache coherence 
mechanism, based on version tags stored with data on disk, 
to ensure that the application is always reading from or 
writing to the right place. 

Naming and location. Each component of the system is 
separately nameable and addressable. Since we are 
implementing this system using FibreChannel, we are basing 
naming and addressing on the FibreChannel world-wide 
unique name (WWN) mechanism. Components inside the 
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management services use a distributed location service for 
finding mobile metadata objects. 

Event propagation. Each system component can report about 
significant events to the management services, so that the 
management services can choose how to react. This is built 
on top of an event distribution and filtering service. 

5 Related work 
Many systems have separated storage into its own service. 

Distributed database systems provide the richest semantics 
for persistent storage. Examples include the myriad of 
commercial client-server databases including Oracle, 
Sybase, Informix, and IBM products, and also a large 
number of research systems. Database services tend to be 
specific to their model of data, and hard to use for other 
purposes. 

File-level services provide distributed access at a file-level 
granularity. Examples of these systems include the CMU 
NASD work, NFS, AFS, Echo, CIFS, and the Amoeba file 
services, among others. These systems work in terms of 
small-granularity entities owned by one user, and usually 
provide comparatively rich semantics. Specificity is the cost 
of this approach: the distributed file system is often 
appropriate only for a narrow range of workloads. This 
specificity has not prevented some of these systems from 
becoming widespread. 

Distributed block services provide large-granularity block- 
addressed storage areas, with the simplest reasonable 
interface to the storage so that it is useful to as many kinds of 
applications as possible (at the cost of requiring intelligence 
in the applications.) Examples include Datamesh, 
Cambridge storage servers, and the DEC SRC Petal system. 
Centralized large disk array systems such as those from EMC 
and StorageTek provide shared block-level storage services. 

Many other researchers have investigated how to provide 
QoS guarantees in networks, in process scheduling, and in 
storage. We have drawn on a very large body of this work. 

6 Summary 
The system we are building is ambitious in its scope, and 
hence there are a number of significant open research areas. 
(Collaboration invited!) Some of them include: 

° What kind of QoS is appropriate for mixed workloads? 
While continuous media have simple rate and jitter 
requirements, suites of transaction processing and 
scientific applications can have complex phasing 
behaviors, and there can be the requirement that resources 
be best-effort over a certain minimum, but fairly 
distributed among multiple connections. 

• How can rich QoS requirements be achieved in host 
interfaces, networks, and devices? That is, what are the 
specific admission control and scheduling algorithms at 
each level? This becomes challenging when fair-best- 
effort traffic is to be supported, for example. 

• How can storage provisioning best be connected to outside 
resource management policies? 

• How should security be implemented? 

• Are shared file and database systems in fact easy to build 
on this interface? Is there a need for additional function 
(e.g. data synchronization operations)? 

• How can optimization algorithms best be scaled up to 
handle very large problems? 

• How can optimization algorithms best be made reactive? 

We believe that a distributed block storage interface is a good 
building block for distributed applications; it's also an 
interesting application in its own right, which must be 
composed of subparts. Our experience has been that QoS is 
the key to a good storage system, and we look forward to an 
exciting debate on this. 
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