
Persistent storage for distributed
Richard Golding and John Wilkes
Storage Systems Program
Computer Systems Laboratory
Hewlett-Packard Laboratories, Palo Alto, CA

applications

Research work in supporting distributed applications has
traditionally focussed on the dynamic part of their
interactions--that is, network communication paths. It's our
belief that although these are important, their very transience
means that they are much less valuable in the long term than
the persistent state that these applications manipulate and
leave behind. Such state can be enormous--tens of terabytes
are not uncommon for large-scale commercial applications,
which are frequently constructed from suites of federated,
distributed applications. Such systems are themselves classic
examples of a distributed application composed from a set of
cooperating pieces. As with network communications, the
persistent storage medium must be well-behaved, in the sense
of providing predictable behavior, so that applications do not
interfere with each other. We believe that quality of service
(QoS) guarantees, and ways to automatically reason about
resource provision to meet them, is the key to building
effective and useful storage services.

1 Introduction
Composing distributed applications requires media through
which the composed applications can communicate. Most
research in this area has focussed on dynamic interactions,
such as network connections and object invocation. This
work has resulted in a preliminary understanding of what is
required for the interactions to work well: things like network
quality of service (QoS) and compositional correctness
matter.

Although dynamic interactions are important, their very
transience means that they are much less valuable in the long
term than the persistent state that these applications
manipulate and leave behind. The persistent storage can be
provided by a database system, a file system, or a low-level
storage service--and we are concentrating on the latter.

Persistent storage is, in our opinion, best provided as a
general external storage service, rather than as part of other
specialized services. Building one general system means that
we can solve many hard problems in one place, rather than re-
implementing them many times. A general service also
makes it possible to connect many different kinds of
applications using it.

The challenge is to make a general storage service useful.
This requires that the value of the compositions it enables

outweighs the costs of using it--including the difficulty of
writing components that use it, the cost of the hardware
required, and the cost of maintenance or management while
it is being used.

The system must exhibit predictable behavior to meet these
requirements. It is essential that each component can be built
without having to reason about the behavior of every other
component that might be in the system, now or in the future.
This becomes especially important in large distributed
systems, where the number of components can amplify small
application misbehaviors into serious problems.
Predictability also means that the system needs to be
continuously available, secure, and incrementally
expandable. The lack of support for any one of these
introduces potential exception situations that components
must account for on their own.

Our research work focuses on storage systems that provide
predictable performance, with special emphasis on the
provisioning of the persistent storage. We emphasize three
aspects:

• a well-defined notion of service level to support
specification and measurement of QoS guarantees, and the
ability to reason about provisioning to meet them;

• design and configuration systems to support that
provisioning; and

• runtime systems to enforce, measure, and improve it.

We use abstract, application-specified QoS requirements,
along with measurements of how they are being met, to drive
resource allocation decisions. In this way we automate many

transaction
I cust°mer [| pr°c°ssing I decision
I resoo°se I ,cohort

requirQeCmSents~i/" - -

rsistent storag

Figure 1 m a suite of applications communicating through
persistent storage.

053

of the management activities that are required to use current
storage systems, thus reducing its cost of use. This also
insulates application components from the particular
behaviors of specific devices, and makes the system capable
of supporting the needs of a wide range of applications.

We believe that the design, construction, and maintenance of
such storage services is a complex, difficult problem well
worthy of attention. From a research perspective, they offer
exciting challenges in continuous availability; providing hard
quality of service (QoS) guarantees (and the associated real
time design issues); coping with enormous scale--both
physical and logical; handling gradual evolution as its
component parts are replaced or upgraded.

Further, we believe that the internals of large-scale storage
systems are themselves classic examples of a distributed
application composed from a set of cooperating pieces--and
a commercially extremely important one at that.

We discuss some of those research issues in this paper, and
present the tack we are taking to address them.

2 A storage service model
We advocate a simple, well-behaved abstraction based on a
block-level interface to storage with QoS guarantees. The
abstraction is simple so that it can be implemented easily
with good cost and performance. The service is well-behaved
in the sense that applications negotiate QoS levels for their
communication with storage, and the service does not allow
other applications to compromise agreed-upon service levels.

Figure 3 shows the abstraction. In it, storage is organized into
virtual stores, large-granularity (several megabytes) chunks
of byte-addressable storage. Each virtual store has a set of
QoS requirements attached to it, defining the aggregate
performance expected of the data, along with reliability,
security, and capacity requirements. When an application
goes to use the virtual store, it opens a connection to the
store, specifying the performance that will be required of the
particular session. The connection carries a contract, which
specifies both the performance needed from the storage

¢)nR

Figure 2 - - using QoS requirements and measurements to
drive and effect provisioning decisions.

system and the behavior that the application will follow.
Once a connection has been established, the application
issues individual read and write requests.

Virtual stores have limited operational semantics: reading
and writing blocks of data, with simple, powerful
consistency and atomicity guarantees when the store is
concurrently used by multiple hosts. This is the common
denominator model on which more complex services, such as
databases or file system, can be built, and it matches the
semantics provided by storage devices today. We have
excluded features such as locking and caching, which we
believe can be better implemented by other system layers.
We are developing a formal model to specify these semantics

more exactly.

Both the virtual store and connection abstractions hide from
the application the actual resources that are used to provide
for QoS requirements. This decouples the application from
details of the storage service, and gives the service the
freedom to automatically manage resources--which makes
the provisioning problem tractable, and frees the application
component designer from device-specific concerns. The
connection model also provides the basis on which the
system can ensure non-interference between applications
using storage: each application need only be concerned about
its own performance contract with the storage system, and
not be concerned with the behaviors of other applications or
with interference from management tasks internal to the
service.

The requirements attached to virtual stores and connections
form a hierarchy. Each individual IO operation is associated
with a particular connection, and uses resources allocated to
that connection. The operation is admitted if it falls within
the application behavior specified in the connection's
contract. If the operation is outside that behavior, they are
processed on a best-effort basis, or may be rejected. Likewise
when a connection is opened, it uses resources allocated to
the associated store, and is admitted if the aggregate
performance of all connections to its target store, after adding
the new connection, is within the overall requirements for the
store. New connections that do not fit within those
requirements can be admitted on a best-effort basis--

clie2t s2ste._.m 4

access /
interface / .,,,,,,,.. ~ ~ .

v,.ua, store i
read and write I l

operations

Figure 3 m abstract view of storage interconnection.

05 .

meaning that the admission will occur if resources can be
found to support the stream, though once the stream is
admitted the IO operations in it will get guaranteed
performance.

The QoS for a store can specify reliability and security
aspects as well as just performance.

3 Our research

There are many areas that need to be developed in order to
build a storage service with QoS guarantees. We picked three
areas to focus our attention on. They are: how to specify QoS
levels; techniques for reasoning about providing resources to
meet requested QoS levels; and runtime mechanisms that
support resource provisioning.

3.1 Specifying QoS levels

Connections and stores, in our model, both have QoS
requirements specified for them. The kinds of requirements
that can be expressed must be broad enough to cover a wide
range of applications, simple enough that they can actually
be determined for real applications by real programmers, and
specific enough that resource needs can be accurately
determined.

We have developed a method of QoS specification that meets
these needs. In it, applications' QoS levels are expressed as a
list of named attributes; these can be written in a form like

{{capacity lOMB} {requestRate 21.5}}
We separate the static parts of service specification from the
dynamic part. The static part is true of the data whether or not
it is being used; this includes attributes such as reliability and
capacity. The dynamic part specifies how the data will be
used, and is in turn separated into application behaviors, such
as request rate and reference locality, and data performance,
such as latency.

The dynamic usage of a store varies over time, both in the
long term as different collections of connections become
active, and in the short term as the load on a single
connection varies, perhaps because of burstiness. Meeting
performance guarantees in this environment is most easily
done by overprovisioning: allocating enough resources to a
store or connection that any transient load can be satisfied.
This, however, often leads to seriously underutilized
resources when bursts are rare.

The QoS specification we use provides mechanisms that
enable efficient resource utilization. The first, phasing,
addresses long-term behaviors: it indicates what connections
can be active at the same time, and which cannot. This
reflects the way many applications go through phases of
behavior (hence the name). The relationship can be given as
a probability, in which case the QoS guarantees will be met
probabilistically.

The second mechanism addresses short-term behaviors, such
as bursts. The application behaviors and performance

expectations can be specified as probability distributions,
which are in turn used to provide probabilistic performance
guarantees.

Our prior work on this area also discusses how device
capabilities can be specified in a similar way [Borowsky97].

There is a final part of our specification that gives
requirements for the system as a whole rather than for
individual components. These typically are expressed as goal
functions that compute a numeric goodness metric from the
state of the system. Examples include the cost of the system
and the balance of load across devices.

To date we have defined a set of QoS attributes that appear to
model several complex database workloads well. (Note that
many workloads for which QoS has been traditionally
specified--such as continuous media streams--have very
simple specifications.) We have built tools that semi-
automatically extract these specifications by measuring a
running copy of the application.

3.2 Reasoning about provisioning

We use requested QoS levels , device capabilities, and system
goals to drive automatic resource allocation (provisioning)
mechanisms.

We decided to frame the provisioning problem as a
constrained optimization problem: determine an assignment
of work to devices so that the system-wide objectives, such
as cost and load balance, are as good as possible while
respecting the constraints that each store's or connection's
QoS must be met. This approach has allowed us to use
standard optimization heuristics based on bin-packing.

We have had to extend these heuristics in a few ways. First,
we had to adapt the techniques to work well with a large
number of constraints, many of which are poorly behaved.
For example, the response latency for a particular connection
does not necessarily increase when more work is added to a
disk. Second, we are adapting some standard heuristics to
handle on-line resource allocation, especially that caused by
incremental changes in the system or workload. Finally, we
are investigating how to make the heuristics scale well up to
the sizes needed for petabyte-scale storage services.

We have produced a static capacity-planning tool, and
demonstrated that it can configure systems as well as humans
can, and in a small fraction of the time. Experiments have

application
requirements

system
goals

c%V'2 , ,

Figure 4---using an optimization engine for provisioning.

optimizatiOnengine ~ P assignment

055

shown that the configured systems properly provide enough
resources to each application to meet performance
requirements, and that even slight decreases in resources
allocated degrade application performance below the
specified levels, which argues that we are getting good
allocations. We also have preliminary heuristics for handling
on-line resource allocation and scaling--though much
remains to be done.

3.3 Runtime support

We use runtime support mechanisms to effect the
provisioning decisions made by the optimization engine.

There are two separate parts to the runtime support, as shown
in Figure 5. One part consists of the access path from the
application to storage devices, and the second are the
management services, including the optimization engine.
The management services make provisioning decisions and
record them in layout metadata; the access path uses the
metadata to determine what resources to use in processing an
IO request. The hosts use an optimistic cache coherence
mechanism, based on version tags, to ensure that they are
using accurate metadata even while the management services
are migating data from device to device.

Another way to look at this separation of concerns is that the
management services implements admission control and
resource allocation policies for stores and connections, while
the rest of the access path handles only individual requests.
This means that the access path is concerned with scheduling
requests, enforcing the behavior that the application has
stated it will follow, and enforcing security.

The management services include the optimization engine, a
migration engine, and a metadata repository. The
optimization engine makes decisions about what resources
should be allocated to different stores. These decisions are
expressed as requests to the migration engine, which
determines when to execute these requests. When the
migration engine determines that a connection from one
device to another can be admitted without interfering with
other guarantees, it arranges for the two devices to
communicate directly to rearrange data. The metadata
repository keeps track of the actual current state of the
system, including the transient state as data is being copied.

application
virtual store (file system. |
interface - , ~ , database manager) Jl~ virtual

I.,J management W host-side virtualization address

services I / ~ high-speed ~ device-
interfacemanagement communication I I relative

2 address
smart device f ~ l r storage device " T
interface I

in the Palladio architecture, including Figure 5 - - the layers
major interfaces and address translation.

The optimization engine and migration engine are
lightweight and distributed: parts can fail and restart without
loss of accuracy or function. The metadata repository, on the
other hand, is stateful, and so it is highly replicated for fault
tolerance and scalability, using standard replication,
commitment, and failure suspicion protocols.

The access path includes the host-side virtualization layer,
which uses and caches metadata that it gets from the
metadata repository to map virtual store address onto chunk
addresses; the network, which provides high-speed, flow-
controlled data movement, borrowing from work including
Hamlyn, VIA, and disk-directed IO; and the storage device,
which is a disk or disk array, but with a smart device interface
that provides scheduling mechanisms to support QoS
requirements and support for cross-device update atomicity.

There is a third part to the runtime system not shown in
Figure 5: the feedback loop by which devices and host
inform the management services about important events that
it should react to.

4 Distributed storage as a composed
application
The components in our system--the parts of the management
services, plus hosts and storage devices--are composed to
form .the overall system. The composition is achieved using
a few basic services.

Network communication. They use a connection-oriented
transport that provides QoS guarantees, and layer higher-
level flow-control and presentation protocols on top of it.

Transactions and atomic commitment. Resources must be
allocated in a fault-tolerant way. The metadata repository
must likewise support agreement among multiple replicated
copies. We are building these high-level activities on top of a
simple transaction mechanism, which uses a distributed
atomic commit protocol internally.

Failure detection. The atomic commit protocol, among other
things, is built in turn upon a failure detection (actually
suspicion) mechanism.

Loosely-synchronized clocks. We use timestamps throughout
the system to allow components to reason about temporal
relationships among events.

Cache coherence. Each host caches a copy of the metadata it
needs, as mentioned earlier. The data can be moved on the fly,
however, and so we are using an optimistic cache coherence
mechanism, based on version tags stored with data on disk,
to ensure that the application is always reading from or
writing to the right place.

Naming and location. Each component of the system is
separately nameable and addressable. Since we are
implementing this system using FibreChannel, we are basing
naming and addressing on the FibreChannel world-wide
unique name (WWN) mechanism. Components inside the

05G

management services use a distributed location service for
finding mobile metadata objects.

Event propagation. Each system component can report about
significant events to the management services, so that the
management services can choose how to react. This is built
on top of an event distribution and filtering service.

5 Related work
Many systems have separated storage into its own service.

Distributed database systems provide the richest semantics
for persistent storage. Examples include the myriad of
commercial client-server databases including Oracle,
Sybase, Informix, and IBM products, and also a large
number of research systems. Database services tend to be
specific to their model of data, and hard to use for other
purposes.

File-level services provide distributed access at a file-level
granularity. Examples of these systems include the CMU
NASD work, NFS, AFS, Echo, CIFS, and the Amoeba file
services, among others. These systems work in terms of
small-granularity entities owned by one user, and usually
provide comparatively rich semantics. Specificity is the cost
of this approach: the distributed file system is often
appropriate only for a narrow range of workloads. This
specificity has not prevented some of these systems from
becoming widespread.

Distributed block services provide large-granularity block-
addressed storage areas, with the simplest reasonable
interface to the storage so that it is useful to as many kinds of
applications as possible (at the cost of requiring intelligence
in the applications.) Examples include Datamesh,
Cambridge storage servers, and the DEC SRC Petal system.
Centralized large disk array systems such as those from EMC
and StorageTek provide shared block-level storage services.

Many other researchers have investigated how to provide
QoS guarantees in networks, in process scheduling, and in
storage. We have drawn on a very large body of this work.

6 Summary
The system we are building is ambitious in its scope, and
hence there are a number of significant open research areas.
(Collaboration invited!) Some of them include:

° What kind of QoS is appropriate for mixed workloads?
While continuous media have simple rate and jitter
requirements, suites of transaction processing and
scientific applications can have complex phasing
behaviors, and there can be the requirement that resources
be best-effort over a certain minimum, but fairly
distributed among multiple connections.

• How can rich QoS requirements be achieved in host
interfaces, networks, and devices? That is, what are the
specific admission control and scheduling algorithms at
each level? This becomes challenging when fair-best-
effort traffic is to be supported, for example.

• How can storage provisioning best be connected to outside
resource management policies?

• How should security be implemented?

• Are shared file and database systems in fact easy to build
on this interface? Is there a need for additional function
(e.g. data synchronization operations)?

• How can optimization algorithms best be scaled up to
handle very large problems?

• How can optimization algorithms best be made reactive?

We believe that a distributed block storage interface is a good
building block for distributed applications; it's also an
interesting application in its own right, which must be
composed of subparts. Our experience has been that QoS is
the key to a good storage system, and we look forward to an
exciting debate on this.

References
[Borowsky97] E. Borowsky, R. Gotding, A. Merchant,

L. Schreier, E. Shriver, M. Spasojevic, and J. Wilkes.
Using attribute-managed storage to achieve QoS. 5th Intl.
Workshop on Quality of Service, Columbia Univ., New
York, June 1997.

057

