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Abstract. The design and operation of very large-scale storage systems is an 
area ripe for application of automated design and management techniques – and 
at the heart of such techniques is the need to represent storage system QoS in 
many guises: the goals (service level requirements) for the storage system, 
predictions for the design that results, enforcement constraints for the runtime 
system to guarantee, and observations made of the system as it runs. Rome is 
the information model that the Storage Systems Program at HP Laboratories 
has developed to address these needs.  We use it as an “information bus” to tie 
together our storage system design, configuration, and monitoring tools.  In 5 
years of development, Rome is now on its third iteration; this paper describes 
its information model, with emphasis on the QoS-related components, and 
presents some of the lessons we have learned over the years in using it. 

1. Introduction 

Designing, supporting, and managing storage systems is getting harder as they get 
larger and more complicated.  And they are getting larger very quickly: compound 
annual growth rates of 150% in storage capacity are not unheard of.  A data center of 
the immediate future could easily contain hundreds or thousands of logical volumes 
and file systems, hundreds of terabytes of disk drives, and handle tens to hundreds of 
gigabytes per second (GB/s) of storage traffic.  Data availability is crucial: if the 
storage system goes down, so does the computer system that relies on it.  Achieving 
all this requires a great deal of complexity: multiple disk array types, different data 
organizations, transactional support, automated fail-over schemes, and so on. 

This complexity – compounded by the desire to avoid operator intervention 
because of errors and the dearth of skilled system administrators – means that the 
design and operation of large-scale storage systems is an area ripe for application of 
automated design and management techniques. At the heart of such techniques is the 
need to represent the QoS goals (service level requirements) of the storage system, the 
design that results, and observations made of the system as it runs.   

Even though many of the same approaches used in the large literature on QoS for 
the networking domain (e.g., [1]) can be applied to storage systems, there are a 
number of differences that make the mapping non-trivial: (1) the low-level storage 
protocols (based on SCSI) are highly intolerant to packet loss, so dropping requests is 
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not a viable technique for handling overload or congestion; (2) there are very strong 
non-linearities in performance that result from the mechanical properties of disks 
drives and the use of large caches: it is easy to construct scenarios in which an 
inappropriate mix of I/O traffic to a disk drive can change the data transfer rate by a 
factor of 50;  (3) there is no support for traffic shaping or QoS enforcement 
techniques in the storage system itself; (4) the cost of the storage system is often the 
dominant component of the overall system cost; and (5) dynamic quality adaptation at 
the application level is extremely rare.  These factors mean that the primary 
approaches to providing QoS guarantees are provisioning and resource (re)-balancing, 
and that the only possible guarantees are probabilistic in nature.  It also means that the 
portions of the QoS specifications for storage systems that describe I/O behavior have 
to be considerably richer than for many other domains, and the language used to 
describe them needs to be correspondingly more expressive than is usually the case 
for network traffic. 

Our approach to the storage design problem has been to develop an architecture for 
a quality-of-service-based “attribute-managed” storage system [3].  This uses QoS 
goals to specify what is wanted to the storage system, which is then responsible for 
deciding how best to provide it – that is, the technically hard part of what we have 
built is an automated provisioning and load-balancing design tool that uses QoS goals 
as targets.  We embed this design tool in a system that can automatically apply its 
decisions to a running system, monitor the result, and make better designs – all 
completely automatically.  

In this scheme, the desired storage system goals are specified in terms appropriate 
to the client of the storage system (e.g., I/O requests per second, number of concurrent 
streams, access patterns, availability, etc.) and the storage system takes care of the 
details of deciding how many storage devices of what type to configure, how they 
should be connected, and how to lay out the data and balance the load across them.  

We view this fundamentally as an optimization problem: something that computers 
are rather good at. Our contributions have been in defining the problem in a way that 
makes it tractable, applying our detailed knowledge of storage system components, 
developing techniques to understand and quantify the QoS specifications that such 
systems have to meet, and putting together design tools that can solve this problem, 
together with a complete suite of ancillary components to make it operational.  

One of the most important – and certainly most central – of our contributions has 
been the Rome object model that is the subject of this paper.  The Rome object (or 
information) model acts as an “information bus” to tie together our automated storage 
system design, configuration, and monitoring tools.   

Rome is used to describe everything that we consider important about storage 
systems and their elements: the workloads presented to a storage system; the QoS 
goals of the system; the kinds of storage and network devices that storage systems can 
contain, and how they can be configured; how a specific storage system is configured; 
how the workloads are spread across those storage devices; how the storage 
components are connected together (e.g., through a FibreChannel or Ethernet-based 
SAN); end-user goals for the system and its behavior; both existing systems and 
potential “what if” designs that might better meet current or future needs; and 
information about the current state of a running system, and how it is behaving.  

The tools we have developed either take in Rome description files, or emit them, or 
both. This makes it possible to compose these tools in many different ways, to 
achieve a wide range of different effects. It also makes it easier to write the tools: 



each one need only concern itself with its portion of the problem, and can rely on 
other tools in the SSP suite to fill in the bits it doesn't deal with. In 5 years of 
development, Rome is now on its third iteration; this paper describes its information 
model, with emphasis on the QoS-related components, and presents some of the 
lessons we have learned over the years in using it. 

2. The flight from Troy: automated storage system designs 

Our first activity was to survey the literature and develop a formulation of the design 
problem as a constraint-based knapsack (bin packing) problem [12]: storage devices 
were represented as knapsacks, with multiple constraint dimensions (capacity, 
throughput, bandwidth, utilization, etc.); storage loads as the things to pack into them. 
The design problem is to select the appropriate set of storage devices, and a packing 
of storage loads onto them, to minimize some objective function (typically system 
cost).  

Our second action was to develop a storage system designer (called Forum) that 
would take in storage system QoS requirements (expressed as I/O workload demands) 
and a library of storage device descriptions (recording their performance capabilities), 
and explore the search space of designs or assignments: bindings of workload 
elements to storage devices.  This paper focuses on how we represent the QoS 
requirements in this system and its successors. 

It happened that we had earlier developed a technique to control a storage-system 
simulator using the Tcl language [6, 9, 17], so it was natural for us to apply this to 
Forum.  The basic idea was very simple: make everything an object, and add 
attributes to those objects to describe additional properties. Tcl’s nested lists made 
this easy to record in the obvious way (see Fig. 1).   

In this architecture, a store is a container for data, such as a logical volume; a 
stream represents a dynamic access pattern to it – the important part of a QoS 
specification.  More than one stream can target a single store.  The store has two 
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{ store foo {
{capacity 100e9} 
{boundTo  disk6}

}}
{ stream foo_143 {

{requestRate 1000}
{requestSize 4096}
{boundTo     foo}
...

}}



attributes: its size (capacity), and the fact that it is boundTo – in this case 
meaning realized by – a particular disk.  Our Tcl-to-C++ interface made it easy to turn 
such Tcl statements into C++ objects.  We chose to equate the statements with top-
level objects, and the attributes with secondary objects hanging off the former, 
indexed by their names.  An important behavior was that any attributes not recognized 
by a tool are merely passed through to the tool’s output, but are otherwise ignored.  

The basic object data structure with its attributes has served us very well. It made it 
easy to add new attributes – either to extend the standard set, or to support a tool-
specific extension, or to try out a new idea. The “ignore things you don’t understand 
rule” has made it easy to extend the set of attributes supported by some tools without 
affecting others: something that would have been very much harder if our primary 
interface had been an API instead of an object model. 

We started with a very simple set of workload attributes: mean request rate (I/Os 
per second), mean request size (bytes), fraction of reads, and run length (the number 
of consecutive requests to sequential addresses) [12].  However, our prior work on 
understanding storage system behavior (e.g., [10, 11]) told us that these simple, fixed 
values would not be sufficient: storage system traffic is very bursty, and an 
understanding of this is vital to understanding its behavior (e.g., it is self-similar [7]).  
As a first step we augmented these simple mean values with variance, modeled on a 
normal distribution.  Even though we suspected that this might not be all that good a 
fit to the real underlying process, it was compatible with our performance models, and 
therefore useful.  

The QoS specification for a storage design could now be expressed in terms of a 
set of stores, each with zero or more streams directed to it, where the streams 
specified the required access patterns that were to be achieved.  We found it helpful to 
distinguish between requirements and behaviors: requirements are the demands made 
on the system that its performance is to be measured against; behaviors are the actions 
taken by the load generator in asking for those requirements.  For example, a 
requirement might be for a data rate of 1MB/s; a behavior might be to deliver this 
requirement as a stream of 1000 random-access 1KB reads per second – which would 
be a very different load on the storage system than a single 1MB request per second. 

The obvious next question was: where should such data come from?  Talking to 
customers and others trying to design storage systems, it became clear that few of 
them were comfortable providing estimates of the load currently imposed on their 
systems, let alone future loads.  Despite this reluctance, it’s important to point out that 
designers and customers are already forced to do just this by the existing manual 
methods of storage system design.  These are still dominated by simple, rule of thumb 
“speeds and feeds” analyses: “this sounds a bit like the system we designed last week 
for _____ except that I think we should bump up the I/O rate by a bit (how about 
20%?), and add a bit more random-access capacity in the disks for the indexing 
system.” The main difference was in the degree of specificity required: we early on 
adopted the slogan that “the more you can tell us, the better a design job we can do”.  
(For example, we once took advantage of anti-correlation data in the workload for a 
database benchmark to reduce the storage system cost by a factor of about 6.) 

The two answers for where the data could come from were (1) measure an existing 
system, and, if necessary, extrapolate to a new one; (2) build up a library of prior 
workloads that we had met, and – just like our human designer counterparts – slowly 
accumulate wisdom about how workloads scaled, and capture these in tools that could 



emit an appropriately-scaled workload approximation given a small number of knobs 
(much like the workload scaling parameters in the TPC database benchmarks [14]).  
The latter proved relatively easy for some simple workloads, but the full generality of 
mapping upper-level application QoS specifications down to low-level storage system 
behavior remains a difficult research topic, an experience shared with others in 
different fields. 

The measurement path proved much more conducive to automation.  The HP-UX 
operating system, which we used as an experimental platform, contains a 
measurement system that we could use for this very purpose: it is able to emit a trace 
record for every single physical I/O request, at a negligible cost (a couple of percent 
processor utilization).    We wrote some tools to scan over such I/O traces, and 
generate the Tcl files describing the streams and stores. 

One more component was needed: a representation of the performance 
characteristics of storage devices.  For our first round, we restricted ourselves to disk 
drives, and were able to convert a subset of the data gathered for the simulation 
models used in the Pantheon simulator [17] into analytical models of disk drive’s 
performance.  The switch to analytical performance models inside the Forum design 
tool was required because the models can be called millions of times during the 
exploration of the design space, and simulations are simply too slow.  To increase the 
flexibility of our models, we structured them as a set of composed components [13]. 

We completed the tool chain by developing an automatic configuration system 
called Panopticon: given a design of a storage system (i.e., a mapping of stores onto 
disk devices), it would construct the appropriate logical volumes to achieve this 
mapping, and we could then run a test on the resulting system.  

2.1 Returning to the Imperial city: supporting disk arrays 

Bolstered by our success with the early Forum results, we thought it would be a 
simple transition to extend our performance models and design language to 
encompass disk arrays.  We were wrong.  Disk arrays themselves need to be 
configured, and frequently have a great deal of internal complexity.  In fact, choosing 
how best to configure a disk array to support a given workload is itself a challenging, 
NP-hard design problem.   

Our first approach was called Minerva; it used “divide and conquer” to break the 
dependencies.  A Minerva run begins by estimating the amount and kind of disk 
arrays that would be needed to meet the workload’s requirements, using some very 
simple performance and capacity models, and pre-configures this set as the device 
descriptions input to Forum, which then attempted to pack the workload on to these 
disk arrays. If the workload did not completely fit, the estimating process was 
repeated with the left-over workload; if it did, then the Forum solver was re-run with 
the objective of evening out the load imbalance across the configured hardware, rather 
than minimizing the system cost.  

By this time, the range of workload parameters we had begun to record was 
becoming rather too large for an ad hoc tool, so we developed a flexible data-analysis 
framework, Rubicon, that used a structure rather like that of a packet filter to perform 
analysis of an I/O trace and generate workload information. 

Separating the internal and external representations also proved vital: we learned 
the hard way to distinguish between the information model and the manifestation of it 



in a tool as C++ objects: it is simply not possible to define a single representation of 
the important attributes of an object for all tools.  (For example, performance data is 
completely ignored by the Panopticon configuration tool, so it would be counter-
productive to insist that it use the same internal C++ data structures as Minerva.) 

Using Minerva and its support tools, we were able to perform the following test 
(see Figure 2): we consulted a local database guru on how to configure the TPC-D 
benchmark [14] for our system; configured the system that way and ran the 
benchmark, measuring the I/O rates it achieved; then used these values as QoS goals 
input to the Minerva design tool, and asked it to match the performance QoS 
requirements at minimum cost.  We used Panopticon to construct the resulting storage 
system design automatically (it had been extended to perform array configuration 
too); reloaded the database, and re-ran the benchmark.  The performance result gave 
us query execution times within 2-3% of the original, but the Minerva-based design 
only needed 16 disk drives in a RAID-5 disk array configuration, whereas the manual 
design had required 30.    

2.2 The arrival of the Visigoths 

As time went on, the internal structure of the Minerva design tool started to slow us 
down, and Eric Anderson developed a new storage system designer (Ergastulum), 
which explored the disk array design space at the same time as it assigned work to the 
array.  This had a number of advantages, not the least of which was that it eliminated 
the rather cumbersome two-phase design process that Minerva had used. 

Ergastulum happened to be much faster than Forum, and showed that parsing the 
old Tcl structures was becoming a significant overhead, so we switched to a hand-
coded parser, and simplified the language design a little.  Ergastulum also needed a 
way to express the range of disk array designs that it could explore, and, rather than 
hard-code these into its logic, we chose slightly to extend the flexibility of the 
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language used to describe the storage devices in the device library.  We called the 
result Rome. 

3. Rome 2: The Renaissance – rebuilding St Peters 

After some time, the first version of Rome became a slightly messy hybrid, with some 
backward-compatible components, and some forward-looking elements.  It was 
sufficient to prompt us to undertake an overhaul of the result.  The result is the present 
version, known as Rome 2.   

Rome 2 was required to be good at describing real-life storage systems – their 
workloads, configurations, and the components they contain (devices, hosts, software, 
networks, etc.); extensible to encompass new storage devices, workload attributes, 
and even new target domains, such as internet data center configurations; rich enough 
to represent many levels of complexity; and capable of being represented in ways that 
are easy to parse, generate, and use by computer tools, and in (possibly different) 
ways that are understandable by humans.  

Rome 2 achieves these goals by separating its underlying object model; from the 
linear encodings of it, which are known as Latin and Greek.  Latin is the “native” 
language of Rome, and is used to specify it in the descriptions that follow; it uses a 
Tcl-like syntax derived from our earlier experiences. (Figure 3 shows a simple QoS 
specification written in Latin.)  Greek is an XML-based linear encoding derived from 
Latin.   

3.1 The Rome object model 

The Rome object model is built on an object-type inheritance hierarchy; it provides 
the underlying structure used by the Rome object model to describe things of interest 
to the Rome tools. Objects in Rome represent things like disk arrays, or part of a 
storage-system workload such as a stream. Each object is introduced by a single 
declaration, has a unique name, and has an associated set of attributes, which provide 
additional information about the object. Attributes are modeled as objects in their own 
right; some of them represent internal components, such as the I/O controllers on a 
disk array.  Much of the Rome object model specification is concerned with 
describing the attributes that each object type can have associated with it. 

The Rome object model is defined in two layers.  The lower level is known as the 
Rome shallow semantics. This occupies a middle ground between the syntax of the 
representation language (e.g., Latin), and the deep semantics, which is an ever-
extending set of object types, components, and attributes, with their associated 
meanings. Because the meanings of the shallow-semantics objects are reasonably well 
standardized across the tools, we can build software libraries to handle the common 
operations on these object types.  Examples of such objects include approximate 
values (of which more below) and common properties such as cost. 

The Rome deep semantics defines the meanings of the remaining object types and 
their attributes. Examples include workload measurements and performance 
requirements (i.e., QoS specifications); data mappings (such as RAID); storage 
devices; interconnect fabrics (including SANs); and host hardware and software.  The 



interpretation of the deep-semantics varies considerably from one tool to another, so it 
is much harder to provide a shared code library for them that does much more than 
define the basic object type.  

Rome represents the idea that many things are alike by giving the objects that 
represent those things a common object type (or objectType). Object types are first-

{ store store1 {    # a 100GB store 
  { capacity 100e9 }    # mapped to a logical unit 
  { boundTo array4.lu_3 }   #  on an array (not shown) 
}} 
 
{ stream stream1 {    # a stream 
  { boundTo store1 }    #  bound to that store 
  { source  host_A1}    # originating at this host 
  { interArrivalTimeOpen {   # inverse of request rate 
       { datamodelNormal best {   # normal fit 
           { mean 0.83e-3 }{ stddev 0.6e-3 } # mean = 1200/sec 
           { chiSquare 0.7 }   # goodness of fit metric 
       }} 
       { datamodelExponential poor {  # exponential fit 
           { mean 0.83e-3 } { chiSquare 0.2 } # 1200/sec, less-good fit 
       }} 
  }} 
  { requestSize {    # a simple behavior 
       { datamodelUniform {   # uniform size in 4-12KiB, 
            { mean 8192 }   #  on 1024-byte boundaries 
            { lbound 4096 } { ubound 12288 } { granularity 1024 } 
       }} 
  { responseTime {datamodelExponential {mean 50e-3}}}  # a goal 
  { stream read {     # just the read requests 
      { filteredBy { opType read }} 
      { interArrivalTimeOpen 1e-3 }  # 1000/sec 
      { requestSize 9216 }   # larger requests on avg. 
  }} 
  { stream write { 
      { filteredBy { opType write }} 
      { interArrivalTimeOpen 5e-3 }  # 200/sec 
      { requestSize 4096 } 
  }} 
  { stream degraded {    # something not right 
      { filteredBy {{ outageDuration 3600 } # 1 hour at a time 
                    { outageFraction 0.002 }}} # 17 hours/year 
      { interArrivalTimeOpen 1.67e-3 } # 600/sec 
      { stream write { 
          { filteredBy { opType write }} 
          { interArrivalTimeOpen 0.1 } # 10/sec 
      }} 
  }} 
  { stream broken {    # completely stopped 
      { filteredBy {{ outageDuration 300 } # 5 min at a time 
                    { outageFraction 0.00001 }}} # 5 min/year 
      { interArrivalTimeOpen inf }  # nothing: 0/sec 
  }} 
}} 

Fig. 3. A (much simplified) sample workload specification example. One store is accessed
by one stream. In normal mode, it gets 1200 requests/sec; in “degraded” mode, it can limp
along for an hour at a time at half that rate; and it can be “broken” (non-accessible) no more
than 5 minutes a year (“five nines availability”).  For simplicity, most of the datamodels
shown are simple numeric values; in practice, distributions would normally be used.  



class entities in Rome – that is, they are objects in their own right.  An objectType 
declaration introduces (defines) a new Rome object type, after which objects and sub-
objects (attributes) with that object type can be declared. Such declarations can occur 
at “the topmost level” (i.e., free-floating in the global namespace), or nested within 
another object.  That is, an objectType object is loosely equivalent to a 
programming language class definition.  Rome object types form a single-inheritance 
isA hierarchy.  

An objectType attribute in an objectType declaration defines a sub-object type 
that only applies in the context of objects of the enclosing objectType.  Such 
components (and their types) can be arbitrarily nested.   

objectType <qualname> { 
  [ { isA        <qualnameobjectType> } ] 
    { objectType <name> { <obj-listcomponent>} }* 
  [ { occurrenceCount <number> | <numeric-range>}} ] 
    <obj-listtype-paramaters> 
} 

This description comes directly from the Rome BNF-like specification; <angle-
brackets> enclose non-terminals in the grammar, [square brackets] denote optional 
components, and an asterisk (*) indicates elements that can be repeated zero or more 
times.  It means that an object type declaration takes as first argument a qualified 
name such as type.sub_type (i.e., dot-separated nesting is allowed), and a list of 
attributes.  One of these attributes may be an isA attribute, which takes as argument 
the qualified name of another objectType, and defines the inheritance hierarchy. 
One or more type-specific attributes exist, defined by their own objectType 
declarations.  An occurrenceCount attribute may be present to bound the number 
of instances of this object type that should be instantiated for every instance of the 
enclosing object. And, finally, there can be a list of objectType-specific attribute 
values that act as defaults for objects of the newly-declared objectType (shown as 
<obj-listtype-paramaters>). 

The set of object types recognized by a Rome tool varies from tool to tool; it is 
based purely on the name of the object’s objectType.  Some tools have various 
object types built in (for example, a storage-system design tool will probably know 
about storage devices that it can design for); and some will not (e.g., a pretty-printer).  
Unrecognized object types are quite acceptable: in such circumstances a tool should 
either ignore the unrecognized object, or pass it on to its output.  However, a tool may 
demand that certain objects or attributes exist, and the occurrenceCount attribute in 
an objectType declaration can specify the allowed number of instances of an object. 

3.2 Attribute inheritance 

Attribute inheritance is the process by which attributes are searched for in an object.  
If an attribute is present in the object, then it is used.  If not, the attribute is looked for 
in the object’s objectType declaration to see if a value is provided for it: that is, the 
search follows the isA type hierarchy, all the way up to the root, if necessary. Values 
provided closer to the point where the search originates take precedence. Each 
missing attribute is searched for independently. 



This allows the objectType statement to store the attributes that all objects of that 
type have in common.  Since adding an attribute or a component to an object does not 
change the type of the object itself, the number of base Rome object types is quite a 
bit smaller than in some other systems.  Thus the Rome objectType 
diskDrive_Quantum425S is an instance of the diskDrive type, and includes 
values for the attribute parameters that don’t vary across instances of Quantum 425S 
disk drives, such as capacity and performance parameters. 

3.3 Approx values and datamodels 

Rome treats data values that represent continuous, real-world values in a special way.  
It recognizes that such values are only approximate estimates of the underlying real-
world process, and represents this by explicitly referring to such values as approx 
values.  You can think of an approx value as the result of statistical sampling or 
characterization efforts on the real underlying process or value. Multiple independent 
measures or estimates can be provided; these are called datamodels. Datamodels can 
be simple or complex, ranging from a simple mean value up to complete distribution 
histograms of observed values.  The currently supported set includes: Normal, 
Gamma, Exponential, Uniform, Constant, and Histogram.   

There are three important properties of this idea.  The first is that we use approx 
values almost everywhere that a value might be expected: this means that everything 
naturally becomes a statistical specification.  The second is that approx values are 
used to express a range of allowed values, e.g., for a goal or a prediction.  Most other 
QoS specification approaches that we are familiar with define a fixed, desired value, 
and then discuss what happens when variations from it occur.  Our approach is to start 
by assuming the presence of variation, and then try to provision to support it.  The 
third is that each datamodel has an associated random number generator that can 
produce values drawn from an equivalent distribution. This allows us, for example, to 
measure a trace, and then construct a similar one for replaying by simply generating 
I/O requests with similar distributions of inter-arrival time, request size, and so on. 

Each datamodel type has its own particular set of parameters – as well as a set that 
can be applied to all datamodels.  For example, a normal distribution datamodel fitted 
to the observed data would have mean and standard deviation parameters; it might 
also have data on the observed largest and smallest values observed, a count of the 
number of observations, how the data was gathered or filtered, and data about the 
underlying process that would otherwise be lost, such as the intrinsic minimum and 
maximum values.  

Datamodels can represent truncated distributions: ones with hard upper and lower 
bounds, and ones with an intrinsic granularity, such as a block size. 

A datamodel instance can have a name, so that there can be more than one of them: 
for example, two different datamodels of the same process, each of which can be 
provided with different goodness of fit measure to estimate how well it captures the 
underlying process.  Note that a tool may choose to use a less-well fitting datamodel 
if it is unable to process the better model – for example, a tool using a queuing model 
may be restricted to exponential distributions, even though a Gamma model may be a 
better fit.  



3.4 Storage workloads 

A workload for a storage system is made up from one or more related workload 
elements (streams and the stores they target, and other workloads) that are applied to a 
system all together, or not at all.  A workload can be used to represent an application, 
or part of an application, or a group of applications. Workloads may physically 
contain workload elements, or merely group ones that are defined elsewhere together 
– or they can do both.  Loops are not permitted; nesting is. 

workload <qualname> { 
 { store   <name> { <obj-liststore> } }* 
 { stream  <name> { <obj-liststream> } }* 
 { contains <qualnameworkload-element-list> }*  
 { workload <obj-list workload> }*  
}  

We envisage that workloads will also capture relative importance of applications, and 
their security attributes, even though this doesn’t yet occur. 

3.5 Stores 

A Rome store represents a container for file systems or database tables.  A store can 
potentially handle many streams, and has only one intrinsic attribute: the capacity it 
provides to its clients, measured in bytes.   

A store also demands backing space for its contents, and this is handled either by 
binding the store to a storage device (strictly, a logical unit on that device for block 
stores), or by mapping the store onto one or more lower-level stores through a 
layout attribute, which supports mappings such as mirroring, logical volume 
managers, and RAID data protection. These mappings may occur many times between 
the high-level logical volume seen by a database or file system, and the low-level disk 
mechanisms used to store their data.   

3.6 Streams 

A stream specifies the dynamic aspects of a workload imposed on a storage system.  
Each stream targets just one store.  The stream attributes represent a combination of 
stream requirements and client behaviors. Requirements are goals that the storage 
system must meet (e.g., the request rate and request size); behaviors characterize the 
workload under which those requirements are to be provided (e.g., the request arrival 
process).  

A stream can be looked at several different ways, and the specifications reflect 
this.  The simplest is simply to record the desired, predicted, or observed access 
pattern.  Others include filtering the accesses by (for example) operation type, or on 
the permitted degraded modes of operation.   We have found every one of the 
attributes described here to be necessary; doubtless, as we progress with our workload 
modeling, we will add to this list. 



streamType  block | NFS | CIFS | 
localUNIX | localWindowsNT  

default is block  

Identifies the type of operations that the stream supports  

boundTo  <qualnamestore>   

Names the (one) store to which this stream is bound. A store can have multiple streams.  

source  <qualnamesource>   

The name of the host system or device that generates the load represented by this stream.  

filteredBy <obj-listfilterTypes>   

How (if at all) this substream was filtered down from the enclosing stream.  The value is a list of 
parameters used for the filter, such as operation type, outage information, or phasing data.  

interArrivalTimeOpen | 
interArrivalTimeClosed  

<approxseconds>  default is 0  

The time between requests issued to the storage system for this stream.  If the arrival process is open, 
then this represents the rate at which requests will be generated regardless of the service time; if the 
arrival process is closed, it represents the “think time” between the completion of one request and the 
start of the next.  

numOutstanding  <approxnumber>   

The number of requests outstanding at a time for this stream.  In a goal, this attribute dominates a closed 
interarrival process specification, and may act as a limiter on the effective arrival rate.  

requestSize  <approxbytes>    

The number of bytes read or written as a single request by this stream.   

runCount  <approxI/O-count>   default is 1  

A simple measure of spatial locality: the number of consecutive I/O requests that will be logically-
consecutive addresses in the target store.  There is no requirement that all the requests in a run have the 
same requestSize, nor need they all be reads or writes – this is solely a measure of the starting 
address of a set of consecutive requests.   

jumpDistance  <approxbytes>  default is random 
uniform across store 

A simple measure of spatial locality: the distance between the end of one request run and the beginning 
of the next request run in the I/O stream. 

responseTime  <approxseconds>   

The time that a single I/O request takes to complete, including any queuing delays.  A distribution can be 
used to specify the range of allowed values for a goal; if a single <numeric-value> is provided, it 
means that both the desired and maximum-allowed response time have the same value.  

onTogether  <qualnamestream-phase-approxoverlap-
list>  

default is 
independent 

The fractions of total time that this rill is in the current phase at the same time as the other listed streams 
are in theirs.  In practice, the list of other phases is likely to be sparse: the most important combinations 
are probably the "on together" and the "this on, other off".  If no value is specified, the value to assume is 
that for independence: the product of the fractions of time that each rill is in the given phase. 

locationSkew  <approxbytes>  default is no skew 
(uniform distribution) 

A distribution to describe the access-location skew, in terms of byte offsets within the store for the 
beginning of independent runs of requests. (That is, if the run length is exactly 2, the locationSkew 
attribute is used to specify the start address of exactly half the I/Os.) The attribute value is usually 
expected to be a histogram, or other non-point distribution. The distribution represents the relative rate at 
which an I/O request in the stream commences at the given portion of the target store's address space; a 
point value causes all runs to begin at that precise address.  



We used to use the request rate to specify the I/O request-arrival process, but Rome 2 
changed this to one based solely on inter-arrival times, to avoid recurring difficulties 
associated with knowing what the appropriate averaging interval should be for the 
arrival rate.  Now we support the following: 

• Open processes ignore the service time of requests they issue, and continue to 
generate requests at the same rate regardless of what the storage system response 
is. This means that there is no a priori upper bound on the number of outstanding 
I/O requests in flight at a time. Here, the interArrivalTime attribute dominates, 
and the numOutstanding attribute merely represents a measured value (e.g., it 
may not represent what is achieved in a new assignment). 

• Closed processes have a fixed upper bound on the number of outstanding I/O 
requests in flight at a time.  If they have a non-zero interArrivalTime, the 
number of outstanding requests may drop below this maximum. An “as fast as 
possible” arrival process can be specified by {interArrivalTimeClosed 0} 
together with some upper bound on the numOutstanding. 

Not shown are new measures we are developing for use with the large data caches 
that are found in disk arrays.  The basic idea is to include a measure of the LRU stack 
depth, or a richer (but much more expensive to measure), re-reference distance 
histogram, but we are still calibrating these measures against real disk arrays. 

3.7 Substreams 
A substream represents a portion of, or view onto, an enclosing stream specification.  
(We sometimes call them rills, from the Scottish word for a small stream.) We speak 
of the substreams as being “filtered from” the enclosing stream. This filtering can 
occur in a number of different ways: 

• by target shard (a shard is a portion of a store, such as one of the back-end disks 
that the store layout maps to); 

• by operation type (opType), such as read or write;  
• by phase, which captures the idea that the stream accesses can be characterized by 

one pattern for a while, and then by another, and so on.  This is expressed by use of 
a Markov-like phase transition model, with individual phases having their own 
properties, including a phase duration and a list of transition probabilities to other 
phases. Phases can be nested, and apply to multiple different time scales.  They 
grew out of a simple on:off model, and are applied to handle the day-to-day change 
in activity levels as well as shorter-term burstiness effects. 

• by a performability specification (see below).  

There is no requirement for the set of filtered substreams to “cover” all the possible 
substreams that could be extracted from the enclosing stream. For example, a block 
stream might have just one substream, filtering for write operations in addition to data 
about the stream’s overall requirements or behavior.  

3.8 Performability 
The top-level stream attributes describe the desired behavior in the absence of 
failures. We refer to it as the baseline performability specification.  Failure to meet 



the baseline performance goal is termed an outage. Some streams can tolerate such 
outages – especially if the outages can be bounded in duration or frequency or both 
[15]. For example, an application may be able to tolerate a short downtime period 
once a month; or may be able to operate with about half its usual workload for a while 
until a broken disk can be repaired. To represent this, the duration and frequency of 
these outage periods can be described, together with the tolerable levels of 
performance during the outages. Each such performability specification is written as a 
set of attributes that are override the baseline performance for the specified outage 
periods.  The use of approx values in these attributes naturally supports probabilistic 
specifications.  

outageDuration  <approxseconds>   

The longest tolerable outage duration.  

outageFrequency  <approxnumber per year>   

outageFraction  <approxfraction 0-1>    

The first specifies the allowed number of separate outages that is permitted (measured, etc) per year.  The 
second specifies the fraction of the total time that can be outages, averaged over 1 year. 

3.9 Goals, observations, and designs 

Although their specifications may look nearly identical when written down – indeed, 
our early tools took in workload observations and used them as QoS goals with no 
editing – we have learned that it is helpful to explicitly label QoS specifications with 
their purpose.   

• Goals are desired target state(s) of the system. A goal is a form of requirements 
specification, or service level objective, with an associated utility function: the 
better the goal is met, the higher the utility function value (our use of approx 
attribute values seldom gives us binary goals). Goals are used as inputs to design 
tools, and as part of the input to evaluation tools that assess whether a design meets 
a set of goals, compares observations against the goals, or compares two or more 
designs against a set of goals.  They may include cost bounds, or other constraints 
on a design step, and (potentially) durations for when they will apply. 

• Predictions (and their associated designs) are the anticipated outcomes of offering 
the target workload to a design for a storage system.  They represent estimates of 
future observations, if such a design were to be implemented, and allow 
comparative evaluations of designs.  A design is a proposed realization of a way to 
achieve a goal.  It captures the notion of “what if …” 

• Observations, are descriptions of a system’s behavior during some time interval.  
(An observation may or may not fit the original goal.)  There can be multiple 
observations – the system might have been observed at different times, or with 
different sampling techniques.  

These are obviously closely related.  For example, our current storage design testbed 
takes measurements (observations) of a running system; feeds these as QoS 
specifications (goals) into a design step that attempts to optimize the resource usage in 
a running system while minimizing the amount of data movement required to do so.  
The result is a new design, whose likely performance we can predict.  

What the Rome QoS specification does not include is the system objective 
function: essentially, what tradeoffs to make in the design process when faced with 



too few resources, or more than necessary.  Determining – let alone specifying – the 
objective functions that system designers use is currently somewhat of a black art.  
The nearest that Rome gets to this is the notion of utility functions, which express the 
benefit to be received from achieving a particular value for a specification parameter. 
It also turns out to be necessary to introduce priorities, or ranks: for example, in order 
to describe the notion of “business critical” applications in the face of disasters such 
as site outages.   

And we have discovered that the objective functions often vary during the design 
process: although people may start by asking “what is a minimum cost design?” they 
then often switch to “how well-balanced can I make the result?” or “how fast can I 
make it go, if we fix the budget?”  This remains an area of active research for us. 

4. Related work 

There is a great deal of work taking place on the use of QoS in designing systems 
(see, for example, the survey [1]).  Most of the external academic work appears to be 
focused on network behavior; ours targets storage systems.  Indeed, we deal with 
issues of network design only after the data placement decisions have been made.  
Part of this is because of the need to simplify the problem, but – perhaps more 
importantly – storage area networks (SANs) typically cost only a few percent of the 
total storage system cost, so simple over-provisioning works quite well. 

As suggested in the introduction, even though storage workloads have many 
similarities to their network counterparts (burstiness, etc.), storage system workloads 
exhibit much greater disparity in their effective loads on the underlying system from 
behaviors like spatial locality, and the manner in which workloads interleave.  We are 
not aware of other work addressing this issue in the same way as our approach. 

We believe that the mapping between QoS goals and the design of the resulting 
system is itself a significant differentiator from most other work in this area.  
Although there have been a few examples of prior work in the storage system space, 
they have tended to assume very simple QoS models.  Most work that we are aware of 
in the network space simply punts on the mapping issues – for example, the recent 
switch of emphasis to DiffServ in the IETF community merely pushes the design 
problem out to the people provisioning and using the network infrastructure.  This 
probably makes sense for an environment where dynamic adaptation and congestion 
control with dropped packets is a very successful approach, but it doesn’t seem to 
work for storage systems.  

There is some work taking place in languages for specifying goals.  For example, 
Bearden et al [2] discuss how goals might be represented in a CIM-like information 
model.  Frølund and Koistinen [5] describe a rich language for expressing service 
level agreements (e.g., it has features to tackle the probabilistic comparisons that 
Rome’s approx values support fairly simply). Both efforts focus a great deal of their 
expressiveness on describing things that it never occurred to us to write down.  For 
example, both of these languages make a point of explicitly stating that if a response 
time goal is 100ms, then only response times that are less than 100ms are acceptable.  
Although this may make sense when very general contracts are being described, it 
seems to be less of a good idea in the rather narrower domain of storage systems – or 
networks, for that matter.  Instead, we take such “goodness” comparisons as self-



evident – or, if you prefer, intrinsic properties of the design tools that use them.  (Try 
inverting the sense of a comparison to see why this seems reasonable!)  

The Quo system [8] supports different operating regimes (perhaps similar to 
Rome’s “outages”), but appears to describe them in terms of visible implementation 
decisions that applications can pick between, or ask to be notified about.  This is at 
odds with our slogan: “tell us what you want to accomplish, not how to do it”. 

Some people find similarities between our goal-directed system design and policy-
based system management.  We beg to differ: most work on policy-based systems has 
been on policy rules, not policy goals.  (A policy rule is a statement of the form if 
<condition> then <action>.)  Languages such as Ponder [4] make such policy rule-
based systems easier to describe, but they don’t help a great deal in the mapping from 
higher-level goals down to selection of which mechanisms to exercise – such as 
which policy rules to enable. 

5. Summary and conclusions 

Rome is an information model for capturing the important parts of the design and 
management problem for storage systems.  Part of that model is a representation of 
QoS goals, predictions, and observations – together with the infrastructure to allow 
these to be turned into designs for storage systems to meet stated goals.  QoS 
specifications for storage systems appear to need to be rather richer than their 
counterparts in the networking space, probably because of the much greater potential 
for non-linear performance interactions on mechanical storage devices, and caches.  
By combining the QoS specification system with the other portions of the storage 
system design problem, the Rome tool set can manipulate a common information 
model, which increases the ease with which a large set of functionality can be put 
together and developed incrementally. 

The Rome 2 object model is quite simple – yet surprisingly powerful.  Making an 
objectType a first class object enables a powerful, convenient attribute inheritance 
model.  The freedom to add and override attributes has proven crucial to allow our 
tools to evolve gracefully, and has helped us avoid domino effects that often result 
from the traditional approach of hard-wiring an object’s programmatic interface on a 
change.  The result is a great deal of expressive power with relatively little overhead. 

Rome is a living design: for example, it is actively evolving to encompass our 
improving understanding of the most important QoS attributes required to capture the 
nuances of new behavior patterns.  (For example, we have only recently added file-
level specifications to Rome.)  It is also being actively extended in storage device 
modeling area: a topic for which space limitations prevented a discussion in this 
document.  We believe that its inherent flexibility will allow these changes to be 
accommodated with relatively little difficulty.  

Finally, we hope to make Rome publicly available for feedback and collaboration. 
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