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Abstract

Enterprise-scalestoragesystems,which cancontainhun-
dredsof host computersand storagedevices and up to
tensof thousandsof disksand logical volumes,aredif-
ficult to design. The volumeof choicesthat needto be
madeis massive, andmany choiceshave unforeseenin-
teractions.Storagesystemdesignis tediousandcompli-
catedto do by hand,usuallyleadingto solutionsthatare
grosslyover-provisioned,substantiallyunder-performing
or, in theworstcase,both.

To solvetheconfigurationnightmare,wepresentM IN-
ERVA: asuiteof toolsfor designingstoragesystemsauto-
matically. M INERVA usesdeclarativespecificationsof ap-
plicationrequirementsanddevicecapabilities;constraint-
basedformulationsof thevarioussub-problems;andop-
timizationtechniquesto explorethesearchspaceof pos-
siblesolutions.

Thispaperalsoexploresandevaluatesthedesigndeci-
sionsthat went into M INERVA, usingspecializedmicro-
and macro-benchmarks.We show that M INERVA can
successfullyhandle a workload with substantialcom-
plexity (a decision-supportdatabasebenchmark).M IN-
ERVA createda 16-diskdesignin only a few minutesthat
achievedthesameperformanceasa 30-disksystemman-
ually designedby humanexperts. Of equalimportance,
M INERVA wasableto predictthe resultingsystem’s per-
formancebeforeit wasbuilt.

�
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1 Intr oduction

Enterprise-scalecomputerinstallationsareextremelydif-

ficult to designandconfigure. They cancontaintensto

hundredsof hostcomputers,connectedby aStorageArea

Network (SAN) suchasFibreChannel[2] or GigabitEth-

ernet[1] to tensto hundredsof storagedevices,with up

to tensof thousandsof disksandlogical volumes.Total

capacitiesin thetensof terabytesarebecomingcommon.

Disk arrays[18] usemultiple, independentdisks that

storeredundantcopiesof thecustomerinformation,in or-

derto providethelevelsof capacity, performance,andre-

liability requiredby mid-rangeandhigh-endcomputing

systems.Commercialdisk arraysexport LUNs (Logical

UNits), which are setsof disks boundtogetherusing a

layout suchas RAID 1/0 or RAID 5, andaddressedasa

single entity by client applications. The complexity of

configuringthestoragesystemis compoundedasindivid-

ualstoragedevicessuchasdiskarraysusuallyhavemany

parametersettingsof theirown.

Storagesystemsare traditionally designedby hand,

which is tedious,slow, error-prone,andfrequentlyresults

in solutionsthat performpoorly or areover-provisioned.

Often,theonlycertainwayof ensuringthatadesignmeets

its goalsis to build andmeasureit. Besidesfrom incurring

prohibitivecosts,thiscantakeweeksor months.

Our solution to this problemis M INERVA, a suite of

tools for the automateddesignof large-scalecomputer

storagesystems.Becausethesolutionspaceis potentially

huge,M INERVA handlesthecombinatorialcomplexity of
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theproblemby dividing it into threestages:(1) choosing

theright setof storagedevicesfor aparticularapplication

workload,(2) choosingvaluesfor configurationparame-

tersin thedevices,and(3) mappingtheuserdataontothe

devices.Eachof theseis a largecombinatorialproblemin

its own right. In particular, (3) canbeshown to beat least

ashardasbin-packing,which is NP-hard[12]; this is one

reasonwhy storagesystemdesignis sodifficult.

M INERVA combinesa numberof differentelements:

� Declarative descriptionsof storageworkloadsand

their requirements.Thesecanbesuppliedby human

users,extractedfrom a library of commoncasesand

scaledto the problemat hand,or automaticallyde-

rivedfrom anexisting,runningsystem.

� A constraint-basedrepresentationof each design

problem and a set of optimization strategies and

heuristicsto searchfor solutions,guidedby predic-

tionsof thelikely effectsof eachchoicemade.

� Fast,validatedanalyticperformancemodelsthates-

timate the effectsof the interactionbetweenwork-

loadsand storagedevices. Although thesemodels

arevital to ourwork,andwespendmuchof ourtime

developingthem,they arenot thefocusof thispaper,

which is concernedwith how thosemodelsareused

in a completedesignsystem.

M INERVA takesasinput descriptionsof the workloadto

berun on thesystembeingdesigned,andof thecapabil-

ities of availablestoragedevices. Its outputis anassign-

ment: a selectionof storagedevices,their configuration,

and a placementof all the piecesof the workload onto

thosestoragedevices.A separateevaluationcomponentis

usedto makepredictionsof theresultingsystem’sperfor-

mance,therebyreducingtheneedto build costlyphysical

prototypes.

An automatedsystemcan explore the spaceof stor-

ageconfigurationsandthecomplex interactionsbetween

partsof theworkloadandstoragedevicesmuchmorethor-

oughlythana personcan.Thereforeit cangenerallyfind

a bettersolutionto thestoragedesignproblem.However,

a humancanalsotake into accountconsiderationswhich

arenot easily quantified,suchas preferencefor a sym-

metricalsolutionor a particularhardwarevendor. Occa-

sionally, a humancanusedomain-specificknowledgeto

improveuponanautomatedsolution.Thus,wedonotat-

temptto removepeoplefrom thedesignloop,but to assist

themby automatingasmuchasis possible,andby allow-

ing themto preciselyquantifytheconsequencesof design

decisions.

Themaincontributionsof thispaperarein demonstrat-

ing that the M INERVA approachis sound,exploring sev-

eral of the designissuesinvolved, andshowing that the

M INERVA-generateddesignsmeettheir requirementsand

areasgoodor betterthanhand-generatedones.

The remainderof this paperis organizedas follows.

Section 2 describesthe M INERVA system, including

its role in the storagesystemlifecycle, detaileddescrip-

tionsof eachof thesystemscomponents,andtheheuris-

tics usedin eachof the optimizationsubproblems.Sec-

tion 3 reportstheresultsof aseriesof experiments,which

demonstratethat our approachallocatesresourcescor-

rectly for a wide rangeof workloads. We survey some

relatedareasin Section4. We concludein Section5 with

somethoughtsonwhatwehave learnedandonwherewe

intendto proceedwith thiswork.

2 The M INERVA system

M INERVA is our systemfor rapidly designinga storage

systemthat meetsworkloadrequirementsand hasnear-

minimum cost. The two key ideas behind M INERVA

areour useof fast analyticaldevice modelsto evaluate

proposeddesigns,andheuristicsearchtechniques.The

heuristicsensurethat we do not have to exhaustively

searchthe (huge)designspace,while the modelsallow
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Figure1: M INERVA’s role in the storage systemlife cy-
cle. M INERVA takes as input workload and device de-
scriptionswhich describethe applicationsrequirements
andthecapabilitiesof availabledevices.Basedon these,
it generatesasoutputanassignmentof theworkload.

usto quickly evaluateeachcandidatesolutionchosenby

theheuristics.

2.1 Storagesystemlifecycle

In order to explain the functionsof M INERVA, it is im-

portantto understandtheoverall storagesystemlifecycle

of which it is a majorcomponent,asthis determinesthe

input andoutputthat the systemmustconsumeandpro-

duce. The systemlifecycle is depictedin Figure1. The

major inputsto M INERVA areworkloaddescriptionsand

devicedescriptions.

A workloaddescriptioncontainsinformationaboutthe

datato be storedon the systemand its accesspatterns.

This information can be originatedfrom several differ-

Host
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Array

Store Store
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Figure2: Objectsin the M INERVA storage management
framework. Hostsgenerateworkloads,which arecharac-
terizedasa setof dynamicstreamsaccessingstaticstores.
Oneor morestoresare mappedto each LUN.

entsources,includingsystemadministratorsor from mea-

surements(I/O traces)taken on a running system. Our

workloaddescriptionscontaintwo typesof objects:stores

and streams. Storesare logically contiguouschunksof

data such as a databasetable or a file system,with a

statedcapacity. Eachstoreis accessedby zeroor more

streams;eachstreamis asequenceof accessesperformed

on the samestore. Their relationshipsare depictedin

Figure2. Streamspecificationsdescribeboth the access

patternandtheperformancerequirementsof applications.

Hence,streamscanbe interpretedasa contract:if appli-

cationscomplywith theaccesspatternspecifications(e.g.

if they initiate no morethana givennumberof accesses

persecond),thenthestoragesystemmustsatisfytheas-

sociatedperformancerequirements.Table1 describesthe

attributesof astream.

Device descriptionscontaininformationaboutthe de-

vicesthat M INERVA canusewhendesigningthestorage

system.They containinformationsuchasthenumberand

typesof diskseacharraycansupport,any constraintson

the LUN configurationsavailable,andperformancechar-

acteristicsfor eachof the arraycomponents.Device de-

scriptionscanbebuilt by usinginformationfrom thede-

vice’s manufacturer(whenavailable),or by runningde-
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Attribute Description Units
requestrate meanrateatwhich requestsarriveat thedevice requests/sec
requestsize meanlengthof a request bytes
runcount meannumberof requestsmadeto contiguousaddresses requests
ontime meandurationof theperiodwhena streamis actively generatingI/Os sec
offtime meandurationof theperiodwhena streamis notactive sec
overlapfraction fractionof the“on” periodwhentwo streamsareactivesimultaneously;

representscorrelationbetweenstreams none

Table1: Workloadcharacteristicsusedby M INERVA.

vice characterizationtoolson therealdevicesto compute

therelevantattributes.

As output,M INERVA generatesan assignment– a set

of deviceschosenfromtheinputdevicedescriptionsanda

mappingof thestoresfrom theworkloaddescriptiononto

thosedevices.Theassignmentshouldbeanear-minimum

costconfigurationthatsupportstheinputworkloads.

The disk arrayconfigurationandbinding of storesto

LUNs is maderealby aneffector tool with theassistance

of the host logical volumemanager, therebyautomating

a particularlyerror-proneoperationthat is usually done

manually.

Thecomplexity of theassignmentproblemis extremely

high. Considera workloadconsistingof � stores. As-

sumingthat thereis only onekind of arrayandwe use �
LUNs, it is easyto seethat thereare

��� �	� possiblecon-

figurations,sinceeachof theLUNscouldbeconfiguredas

eitherRAID 1/0or RAID 5,andeachof the � storescanbe

assignedto any of the � LUNs. Sinceeachworkloadcould

requireanentireLUN, we mayneedasmany as � LUNs,

which givesus 
 � ���� � ��� ��������� � ������� possiblecon-

figurationsto consider. For amodestworkloadconsisting

of 30stores,anexhaustivesearchwouldconsiderasmany

as ���! #"%$'& possibleconfigurations;if evaluatingeachcon-

figurationrequired  ("%)+* , finding theoptimalsolutionby

bruteforcewould require  #"�, � years.

No realsystemis static: changesin workloads,device

failures,andacquisitionof new devicesall causesystems

to evolve. M INERVA canbe usedto handlethis, too, as

Figure1 shows. Thenew workloadrequirementscanbe

synthesizedfrom measurementstakenontherunningsys-

tem,andbefed asinput to M INERVA, alongwith theex-

isting storagesystemdesign.Theoutputfrom M INERVA

now representschangesto theconfigurationof thesystem,

ratherthanacompletenew design.

2.2 Ar chitectural overview

Figure3 showsthecontrolflow betweeneachof thehigh-

level componentsmakingup the M INERVA system.The

storagedesignproblemis split into threemain subprob-

lems: arrayallocation,arrayconfiguration,andstoreas-

signment.Theapproachof partitioningtheproblemwas

selectedto make theoverall searchfeasible,by reducing

the numberof possiblechoices. Eachstepmakes pro-

gressivelymorefine-graineddecisions,usingsuccessively

moredetailedmodels. By relying on the coarse-grained

resultsfrom thepreviouscomponent,eachstageis ableto

cut down its searchspaceto manageableproportions.In

addition,step-specificheuristicscanbeusedto reducethe

solutionspacefurtheragain.

Thegoalof thearrayallocationstepis to selectasetof

configuredarraysthatsatisfytheresourcerequirementsof

theworkload. This stepis furtherdivided into two com-

ponents,the tagger, whichassignsa preferredRAID level

to a partof theworkload,andtheallocator, which deter-

mineshow many arraysareneeded.

Array configurationis handledby the array designer,

which configuresa singlearrayat a time. This stageem-
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Figure3: M INERVA control flow. Thearray designeris
calledasa subroutineby theallocator.

bodiesthedevice-specificknowledgeneededto configure

anindividual arraytype,whereastheallocatorusesmore

genericdevicemodels.

Thestoreassignmentproblemis handledby thesolver,

which assignsstoresto LUNs generatedby the arrayde-

signer. Sincetheallocatorhasnoinformationaboutwhich

LUN will eventually be usedfor a given store, its per-

formancepredictionsare lessaccuratethanthe solver’s,

andit may under- or over-provision the devicesit offers

to the solver, resulting in suboptimalsolutions. Over-

provisioningresultsin too many storageresourcesbeing

used,while under-provisioningrestrictsthesolver to only

considera subsetof the storesandarrayson eachitera-

tion. To addressthe under-provisioningissue,we re-run

theallocatorandsolveron any unassignedstores,andre-

peatthis loop aslong asthereis forwardprogress.Over-

provisioningis solvedthroughthe introductionof a final

optimizationpass. The optimizerprunesout unusedre-

sourcesandperformsare-assignmentthatattemptstobal-

ancetheloadacrosstheremainingdevices.

Figure4 depictsthe intermediateresultsgeneratedby

M INERVA ona sampleworkload.We show a simplecase

to clarify theroleof eachcomponent;interesting,realistic

workloadshave hundredsor thousandsof stores. In the

figure,M INERVA is run on a combinationof storesfrom

two differentapplications.(This distinctionis irrelevant

to our tool, as storesand streamsare uniformly treated

accordingto their specifications,regardlessof which ap-

plicationthey correspondto.) Thesestoresarepresented

to the tagger, which will annotateeachoneasrequiring

eitherRAID 1/0 or RAID 5 storage.Theallocatorandar-

ray designerthenmake an initial passat thenumberand

type of arraysrequiredto supportthe workload,andal-

locatetwo arrays– oneof which is dedicatedexclusively

to RAID 1/0 storage,the other with LUNs of both stor-

ageclasses.The solver assignsstoresfrom the original

workload onto the LUNs, producinga workload assign-

mentthat packsthe storageastightly aspossible(mini-

mizing cost),while meetingthe workloadsperformance

requirements. In the exampleshown, the solver deter-

minesthatthestorescanall bepackedontoasinglearray.

Theoptimizerexaminesthesolverssolution,andremoves

the unnecessaryLUNs anddevices,producinga final as-

signment.

Theevaluatoris atool wehavedevelopedseparately. It

canbeusedtoverify thecorrectnessof thefinal M INERVA

solution,by applyingtheanalyticaldevice models.Since

it runsonly once,it computesmoresophisticatedperfor-

mancemetricsthanis feasiblein thesolver. Sincewehave

largely kept its developmentseparatefrom the solver, it

alsoprovidesan independentcheckon our implementa-

tion of thecomplex analyticalmodels.It canalsobeused

asa stand-alonetool for assessingthe performanceof a

proposedstoragesystemdesign,whetherit is generated

by hand,by M INERVA, or by someothertool.

We will now describeeachof the M INERVA compo-

nentsin moredetail.
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Figure4: M INERVA runningon a samplecombinationof on-linetransactionprocessinganddecisionsupportwork-
loads. This examplerequiresa single iteration of the outer loop, as all storesare assignedin the first pass. The
dedicatedRAID 1/0 array originally configuredby theallocator turnsout to beunnecessary;it is deletedin thefinal
optimizationpass.

2.3 Analytical devicemodels

Our optimizationalgorithmsrely on analyticalmodelsto

determineif the proposedsolution is feasible,i.e. if it

satisfiesall workloadrequirementsanddoesnotoverload

any device.

Eachstreamin theworkloadis modeledasan ON-OFF

Markov-modulatedPoissonprocessof requests.We take

into accounttherequestrate,therequestsize,what frac-

tion of requestsare readsversuswrites, how sequential

the requestsare,andthe correlations(phasing)between

theON periodsof differentstreams.

Thearraymodelconsistsof a modelof thearraycon-

troller, a modelof the bus connectingthe controllerand

the disks, and a modelof the disks. Thesesub-models

computetheloadimposedby theworkloadoneachcom-

ponentandverify that the maximumutilization of each

is less than one. Someof thesesub-modelsare quite

complex, sincethey musttake into accounttheeffectsof

caching,sequentiality, read-ahead,thelocationof thedata

accessedrelative to thestripeunit andstripeboundaries,

and of requestsfrom different streamsthat arrive inter-

leavedin time to thearray.

When the inner detailsof a disk array are not avail-

able(for example,whenthereareproprietarydesignde-

tails),weusea“bestguess”genericdiskarraymodelwith

parametersthat aremeasuredor estimated.We alsoal-

low for calibrationfactors, whichcorrecttheperformance

estimatesbasedon measurementsof micro-benchmarks

running againstthe real device. Our array throughput

modelsarefully describedin [16].

We will use the Hewlett-Packard SureStore Model

30/FCHigh Availability (FC-30) disk array[7] asa case

studyto validateour models. Detailsof this disk array,

andof themethodsusedto measureits performance,are
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given in Section3.1; we show that themodelachievesa

maximumerrorof 20%in thethroughputpredictions.

2.4 The tagger

Thegoalof thetaggeris to chooseastorageclassthatwill

supporteachstore’s accesspatternefficiently; this helps

the allocatorapply device modelsto the workload. The

taggerconsiderstwo redundantstorageclasses,RAID 5

and RAID 1/0 (stripedmirroring) [18]; we have devel-

opedandvalidatedanalyticalarrayperformancemodels

for bothstorageclasses.For simplicity, we usethe term

RAID 1/0 to includethecaseof a2-diskRAID 1 LUN.

Sinceit doesnot have informationaboutwhich stores

aregoing to endup beingmappedto the sameLUN, the

taggerhasto rely on (sometimesvery)approximatedval-

uesto make decisions.A setof simplerulesis evaluated

for onestoreata time, in apredeterminedorder(first rule

that fires is the definingone) to determinewhich RAID

level will be mostefficient for the store. For clarity, we

describethecasein which eachstorehasa singlestream;

theextensionto multiplestreamsis straightforward,keep-

ing in mind thatoverlapfractionsareignoredby thetag-

ger. Weusesubscriptsto distinguishbetweenthereadand

write valuesof attributes,wheneverappropriate.

Thefirst rulesselectthosestoreswhicharelikely to be

capacity-bound,and tagsthem as RAID 5. Theserules

calculatethe total bandwidthgeneratedby theworkload,

perGB of storage:-/. �0�2143454673�*(891�:;8<34=>�(1�34546?3�*#8@*(A<BC34=D � �(1�34546?3�*#891�:E8<34FG�H1�3#54673�*#8@*HA<BE34FI��J%*#8<K4143�*(A<BC3
andtheapproximateseekspersecondperGB of storage

*(343 � *L� =�M�N�O4M�P9QR='SQRM@T='O �%U<V O � Q D � � ='M@N�O4M�P9QR='SQRM@W='O ��U<V O � Q*#8<K41�3�*(A9BE3
(wherewe approximateeachclient write as resultingin

two disk-level writes in the array back-end). If both

of thesevaluesare sufficiently small (the exact values

are device-specific)then the store is determinedto be

capacity-bound.Device-specificvaluesareinevitable,for

the capabilitiesof different arrays(e.g. the maximum

numberof seeksthattheirdiskscanmakepersecond)are

alsodifferent.

If thestoresarenotcapacitybound,thefollowing rules

estimatethe averagenumberof I/O operationsper sec-

ond(IOPS)thatwill begeneratedby thestreamfor each

RAID level beingconsidered:

146?�+*HA<BE3X� 146?�	Y!K46?�	8	�C�21�3#54673�*#8@*HA<BE34=��(1434:;Z<[?1�:EYD 1�34546734*#8@*(A<BC34F\�E�� ^]_1�34:;Z<[?14:;YH���` ��acbd=X� 1�34546734*#891�:;8<34=1#6?�	Y!K46?�	8 � e 146f�+*(A<BE3*(6d*HA<BE3 D  (g
` ��acbihj (" F � 1�34546734*#891�:;8<3 F146?�	Y!K46f�	8 � e 146?�+*(A9BE3*H6d*(A<BC3 D  Hg` ��acbihlk F � 1�34546734*#891�:;8<34F146?�	Y!K46f�	8 �H�	ZCA@* � *
where 1�34:EZ<[?1�:;Y is the fraction of all requeststhat are

readsin thestream,*(67*(A<BC3 is thesizeof eachstripeunit in

bytes,and �	Z%A@* � * is thenumberof disksin theLUN. The

secondtermin thesecondandthird formulasdenotesthe

averagenumberof stripeunitsinvolvedin processingone

run of client requests;for RAID 5, we assumethat each

write run involvesall the disks in the LUN. The tagger

thenselectstheRAID level thatwill resultin thesmallest

numberof per-disk IOPSasthestoretag. In Figure4, six

storeswere taggedas RAID 1/0, and the two remaining

onesweretaggedasRAID 5.

2.5 The allocator and array designer

Thegoalof the allocatoris to selecta reasonable,rather

thanoptimal,setof configuredarraysthatsatisfythe re-

sourcerequirementsof the workload. Within the allo-

cator, the searchproblemis againpartitioned,by using

a hierarchyof threeprogressively morerefinedsearches,

shown in Figure5. At thehighest(andcoarsest)level the

allocatorconsidersonly the type and numberof arrays.

The secondlevel of the allocatorexploresthe spaceof
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Figure5: Howtheallocatorevaluatesa populationof ar-
rays:usinganaggregationof theworkloads,theallocator
tries all possiblecombinationsof array configurationsto
find theonethat is feasiblewith lowestcost,if any.

arrayconfigurations,givenafixedtypeandnumberof ar-

rays.In thelowestlevel, thearraydesignerdecideshow to

bestdivide eachsinglearrayinto LUNs of differentsizes

andRAID levelsto supporta subsetof theworkload.

2.5.1 Allocator models

Becausestoreshave not yet beenassignedto LUNs, the

allocatorcanonly apply analyticaldevice modelsto the

aggregateworkload(formedby addingtogetherattributes

for eachstream),partitionedby storageclass.Thealloca-

tor usessimplifiedmodelsthatassumetheworkloadto be

infinitely anduniformly divisible. Becausethesesimpli-

fied modelsignorephasing,the allocatorcanoverprovi-

sion. It mayalsorarelyunderprovision,sincein practice

theworkloadis dividedinto finite-sizepieces.

To handlestoresand streamswith large resourcere-

quirements,M INERVA usesa rillifier that automatically

dividesstoresinto shards (piecesof stores)andstreams

into rills (piecesof streams).Thesizeof the shardsand

rills is selectedsuchthat their resourcerequirementscan

be met by a single LUN of the target disk array. The

currentM INERVA implementationof the rillifier divides

storeswith capacitygreaterthan2 GB into smallershards.

We chosethe2 GB thresholdso thatall shardswould fit

comfortablyinto LUNs built from the 4 GB disks in the

FC-30array. Only oneof our input workloadshada sin-

gle streamwith a requestratelargeenoughto exceedthe

bandwidthandphasedutilization constraintsof anentire

FC-30array, sowe split it manuallyinto two shardsand

two rills.

2.5.2 Allocator search

At the highestlevel of the search,the allocatorusesa

branch-and-boundstrategy to choosehow many instances

of eachtype of arrayto provision. The lower boundre-

flectstheaggregatecapacityandbandwidthrequirements

of theworkload,andtheresourcesavailableon thecandi-

datearray. Thealgorithmsearchesin orderof increasing

cost, terminatingat the first configurationthat supports

theaggregateworkload.For example,if theworkloadre-

quires300 GB of usableRAID 1/0 capacity, five FC-30

arrayseachfilled with thirty 4 GB disks would suffice.

In eachstepin the branch-and-boundsearch,the alloca-

tor considersthe configurationwith the lowest cost. If

theallocatorcanconfigurethearraysrepresentedby this

nodeto supporttheworkload,thealgorithmis complete.

Otherwise,a new candidateis addedto thepopulationby

simply incrementingthenumberof arrays.Thesearchis

boundedby thetrivial upperboundthatthenumberof ar-

raysshouldbenogreaterthanthenumberof stores.

The secondlevel of searchingtestswhether � arrays

cansupporttheworkloadby searchingthespaceof pos-

sible configurationsfor � arraysof the given type as il-

lustratedin Figure5. It beginsby generatingarraycon-

figurationsthat aremixed, i.e. eacharraycontainsboth
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RAID 1/0 andRAID 5 LUNs. To prunethesearch,it will

usethe sameconfigurationfor every mixed array. For

example,if a particulartype of device cansupportboth

RAID 1/0 andRAID 5 storage,the � deviceswill beparti-

tionedinto asetof identicallyconfigureddevicesthatsup-

portsamixtureof thetwo storageclasses.If thoseconfig-

ureddevicesfail to satisfytheworkloadrequirements,the

allocatoriteratively convertsonearrayto dedicated(con-

taining only RAID 1/0 or RAID 5 storageclasses),and

testswhetherthe modifiedsetof arrayscansupportthe

workload.Thebranch andbound—biasdedicatedvariant

of theallocatorperformsthis searchin reverseorder, be-

ginningwith all arraysdedicatedandconvertingthemto

mixedoneata time.

Theallocatorusesthearraydesignerto “build” thede-

vices in eachof thesepartitions,determiningthe exact

configurationandparametersettingsfor a particularclass

of arrays.It is possiblethatthearraydesignerwill fail, in

which casetheallocatorcontinuesto searchtheconfigu-

rationspace.

In theexampleof Figure4, theallocatorgeneratedand

configuredtwo arrays: a mixed one, and a RAID 1/0-

dedicatedone. The taggedworkload was bandwidth-

constrained,and the aggregatemodels’ calculationsde-

terminedthata secondarraywould beneededto provide

theaggregatebandwidth.

2.5.3 The array designer

At the lowestlevel, the allocatorusesthe arraydesigner

to determinetheexactLUN sizesandotherparameterset-

tings for a singlearray. Thearraydesignerembodiesthe

array-specificrulesfor creatingLUNsbuilt usingthedisks

availablein the array, suchasbalancingLUN placement

acrossback-endbuses,while meetingarray-specificcon-

straintssuchasthe maximumnumberof disksper LUN

andthemaximumnumberof LUNsperarray.

For a dedicatedarray, the arraydesigneralways uses

all the disks the array can hold. It begins with a sim-

ple configuration,dividing the disks into LUNs of equal

size(exceptfor onefinal LUN, which might besmaller).

For example,if a particulararrayallows LUNswith stripe

widths3,4,or9,andthereare30disksavailable,thearray

designerwill build a populationof candidateconfigura-

tionswhich hasten3-diskLUNs, seven4-disk LUNs,and

three9-diskLUNsplusa 3-diskLUN. In additionto these

threesimpleconfigurations,thearraydesigneraddsin one

morecandidateto thepopulationby generatinga greedy

configuration,whereLUN sizesaredeterminedby theca-

pacity andbandwidthrequirementsof the workload. Of

thesefour possibleconfigurations,only thosethatsatisfy

the requirementsof the workloadareconsideredfurther.

If thereis morethanonepossibleconfiguration,thearray

designerwill choosetheconfigurationwith themostuni-

form LUN stripewidth, becauseuniform LUN sizestend

to allow the solver and optimizer to tightly pack LUNs

ontothearrays.If multiple configurationshave thesame

uniformity, thearraydesignerwill selectthestripewidth

closestto a preferredstripewidth that is chosento maxi-

mizeperformance.

For arrayswith mixed storageclasses,the array de-

signerconsidersthe storageclassesoneat a time. Only

asmany diskswill beboundinto LUNs asareneededfor

the workloadat hand;this leavesunuseddisksfor other

storageclasseson the samearray. A populationof can-

didateconfigurationsis thenbuilt by consideringsimple

designswhich satisfy the aggregatecapacityand band-

width requirementsof theworkloadandthenprogressing

to morecomplex designs.First, a setof simpleconfigu-

rationsof only oneLUN sizeis generatedwhich satisfies

theresourcerequirements.To thissetof candidateconfig-

urations,a morecomplex setis generatedby considering

configurationswith LUNs of two or moredifferentstripe

widths.

Thisprocessis repeatedfor everystorageclassrequired

for thearray, generatinga collectionof candidateconfig-

urationsfor eachclass. A final list of the crossproduct
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of eachof thesesetsis createdandpareddown to contain

only the legal combinationsbasedon the array-specific

constraints.As in thededicatedarraycase,thearrayde-

signerchosesthe configurationwhich hasthe mostuni-

form LUN stripewidths,andin caseof a tie thesmallest

deviation from thepreferredstripewidth.

If thearraydesignerfindsthattheworkloadit wasgiven

greatlyunder-utilizesa singlearray, it will still configure

that arraywith all disksconfiguredinto LUNs, to enable

the solver to usethe extra capacity. The optimizerwill

removeunnecessaryresourceslater.

Oncetheconfigurationhasbeenselected,thefinal as-

signmentof targetdisksto LUNs is donein a round-robin

fashionacrossbussesandthecompletearraydesignis re-

turnedto theallocator. It is possiblethatthearraydesigner

will not find any design. This canoccur in caseswhere

the allocatorrequestsrequirementswhich simply cannot

bemet,or wheretheresourcerequirementsareveryhigh,

sincethe designproceduredoesnot performan exhaus-

tivesearchof thespaceof all possibleconfigurations.The

arraydesignerwill generallyonly fail to generatea con-

figuredarrayin the extremelyrarecasewherea feasible

solutionis anarraywith LUNsof morethanfour different

stripewidthsperstorageclass.In thatcase,theallocator

will retry usinga slightly differentconfiguration;in our

experience,thesecondtry wasalwayssuccessful.

2.6 The solver

Oncea set of configuredarrayshas beenselected,the

solver assignsstoresto LUNs. We have traditionally [4]

treatedthisasamultidimensionalconstrainedbin-packing

optimizationproblem. Theconstraintscorrespondto the

performancecapabilitiesof the arrays,and the goal is

to produceanassignmentthatminimizessomeobjective

function.We evaluatetheconstraintsusinganalyticalde-

vice models,testingwhethera givenassignmentcansup-

porttherequirementsof thestoresandstreams.For exam-

ple,thecombinedsizeof all storesassignedtoaLUN must

notexceedthecapacityit provides;norcanthephaseduti-

lizationof a LUN exceed100%.Currentlywe modelfour

constraints:LUN capacity, LUN phasedutilization, array

busbandwidth,andarraycontrollerutilization.Eachstore

mustbeassignedto a LUN matchingits tag.

In ourexamplein Figure4, thesolverwasableto fit all

storesinto asinglemixedarray. Theaggregatebandwidth

requirementsestimateda priori by the allocator turned

out to be too pessimistic,becausethey ignoredtheeffect

of phasingamongstreams(or, equivalently, they assumed

thateverystreamwasON all thetime).

Wehaveinvestigatedandextendedseveraloptimization

heuristics.Thefirst solver weconsideris simplerandom.

It considers50 randomorderingsof storesandLUNs,and

usesa first-fit strategy to assignstoresto LUNs, choosing

theassignmentthatminimizestheobjective function.

The remaining two solvers, Toyoda and Toyo-

daWeighted, usebest-fit heuristics. We repeatedlycon-

sider all possibleassignmentsof unassignedstoresto

LUNs and make the assignmentwhich is the best fit.

Whethera storefits in a LUNis determinedby applying

the constraints.The bestassignmentis determinedby a

heuristicfunction,calleda gradient, which combinesthe

objective functionthatuserscareabout(e.g.,systemcost

in thecurrentM INERVA implementation)with a measure

of how economicallythestoreutilizesunusedresources.

The solver Toyoda is our mapping of Toyoda’s

method[22] to theassignmentproblem.Thissolvercom-

putesa gradientfor each � storem LUN � pair that servesas

an estimateof the cost/benefittradeoff of assigningthe

storeto theLUN. Figure6 illustratesthisfor two stores,in

a simple2-dimensionalexample. The axeson the graph

correspondto two different resources,suchas capacity

andphasedutilization. Thevector n indicateshow much

of eachresourcehasalreadybeenusedon this LUN, and

thevectorsb � and b	o indicatehow muchof eachresource

wouldbeconsumedif store1 or store2 wereassignedto

this LUN. For eachcandidatestore,the“penalty” (shown
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Figure 6: How the Toyoda (left) and ToyodaWeighted
(right) solvers selectstores. Each axis correspondsto a
resourceprovidedbytheLUN. Thevector n describesthe
resourcesthathavealreadybeenused,andthevectors b �
and b o describethe resourcesthat would be consumed
by two different storesif they were assignedto the LUN.
TheToyodaalgorithm (left) will assignthe store whose
vectorprojectedonto n is shortest—inthis example, b o .
For theToyodaWeightedalgorithm(right), thevector n�p
describestheresourcesavailableon theLUN, andtheal-
gorithm will assignthe store whosevector’s directionis
closestto thedirectionof nqp —in thisexample, b � .
as a � and a o in the figure) of assigningthat storeto the

currentLUN is the projectionof the vector representing

theresourceusagefor thatstoreontothevectorrepresent-

ing theresourcesalreadyconsumed.Thefinal gradientis

computedas �� 4J penalty] lun cost� , favoringassignments

to LUNs thatarealreadyin useor thathave low cost.Toy-

oda iteratively assignsthestorewith thehighestgradient,

andrecomputesthegradientsuntil no morestorescanbe

assigned.In practicethismeansthatLUNsarelikely to be

filled in orderof increasingcost,andthatwithin eachLUN

storeswill beselectedto minimizeresourcecontention.

The third solver we consider in this paper, Toyo-

daWeighted, usesthesameapproachasToyoda, but com-

putesgradientsdifferently, asillustratedin the right half

of Figure 6. The vector n�p representshow much of

eachresourceis availablegiventhesetof storescurrently

assignedto the LUN. The gradientfor a store is com-

puted as the cosineof the angle betweenthe resource

usagevectorof the storeand n�p , the vector represent-

ing the resourcesremainingon the LUN. This heuristic

thereforefavors assigningstoresthat use the resources

remainingon the LUN in a balancedway. The Toyo-

daWeightedsolver alsosupportsarbitraryobjective func-

tions: the final gradientis computedasobjectivevalue �rHsCt �2uv� . For theM INERVA goalof aminimumcostassign-

ment,weuseobjectivevalue � max lun cost ] lun cost,

wheremax lun costis themaximumpossiblecostoverall

LUNs in thesystembeingdesigned.

2.7 The optimizer

OnceM INERVA successfullyproducesasetof arraysthat

supportsthe input workload, we perform a final global

optimizationpass. The optimizerfirst re-runsthe solver

againsttheentireinputworkloadandthesetof arrayspro-

ducedin themainloopof M INERVA, to seeif thenumber

of arrayscanbereduced.This is clearly thecasefor the

examplein Figure4, asthe RAID 1/0-dedicatedarray is

notneededatall. Thearrayis deletedfrom thefinal M IN-

ERVA output.

Once cost has been minimized, M INERVA then

runs the ToyodaWeighted solver to generatethe fi-

nal configuration, but this time with a special ob-

jective function that strives to balance load across

the LUNs: objectivevalue �w ^] lun utilization, where

lun utilization is thecurrentutilization of the LUN. Thus

thealgorithmwill favor assigningstoresto underutilized

LUNs. If thesolver succeedsin finding a solution,there-

sult is the final outputof M INERVA. Otherwise,we fall

backon theminimumcostsolutionfoundearlier.

We also considertwo variantson the baselineopti-

mizer, eachusinga differentalgorithmfor the final load

balancingpass.Thefirst, simplerandom, is a versionof

the randomizedfirst-fit solver: it generates50 trial solu-

tions,andselectstheonewith thelowestvariancein LUN

utilization. Thesecond,simplebalance, assignsstoresto

LUNs in round-robin,first-fit order, subjectonly to capac-

ity andutilizationconstraints.
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2.8 The clusterer

Initial testswith early M INERVA prototypesshowed that

the solver andoptimizerdid not scalewell up to work-

loadswith several hundredstores(especiallyif many of

themwereRAID 5). Every time a storeplacementdeci-

sion is considered,the solver/optimizermust recompute

complex estimationsof LUN utilization in the presence

of inter-streamcorrelations.The high costof doing this

resultedin unacceptablylongrunningtimes– in theorder

of severaldays.

To solve this problemwe startedaggregatingmultiple

input storestogetherinto clusters andhaving the solver

mapwholeclustersto LUNs. We examinedmany possi-

ble clusteringheuristics,suchaslimiting thesizeof each

cluster(built by a first-fit traversalon a sortedlist of in-

put stores),or thenumberof storespercluster, or theto-

tal bandwidthrequirementsof all the streamsaccessing

a cluster. Clusteringstoresbasedpurelyon their size(ca-

pacity)oftenresultedonclustershaving alargenumberof

streamson them,which in turn implied modestspeedup

gainsasthe runningtimesof the LUN utilization calcu-

lationsgrow quickly with this parameter. The empirical

ruleof thumbderivedfromourexperimentswasto haveat

most20 streamspercluster. On theotherside,clustering

solelybasedon anaggregatebandwidthlimit resultedin

significantlymoreexpensivesolutions,asmany of ourtest

workloadswerebandwidth-boundto begin with (we be-

lievethatourclusteringtestsuiteis anunbiased,although

possiblysimplistic,representationof theworkloadsM IN-

ERVA will handle in real situations). The best policy

for clusterconstructionwasa hybrid bandwidth/capacity

limit: we addstoresto a clusteruntil theclusterreaches

10MB/sbandwidth,or 2GB size.By cuttingdown on the

numberof objectsthesolver mustdealwith, aggregation

leadsto dramaticperformanceimprovements. This op-

timization typically resultedin a speedupof 15x-20xfor

thelongerruns.

Thedownsideis that the quality of thefinal bin pack-

ing maysuffer, becauseweareartificially constrainingthe

originalinputproblem:storesin thesameclusterwill nec-

essarilybe mappedto the sameLUN. This may restrict

thenumberof packingsthesolver is allowedto consider.

However, the hybrid bandwidth/capacityclusteringpol-

icy causedjust a slight degradationin our experiments:

the quality (cost)of the final solutionbecameabout3%

higherfor ourTPC-Dcasestudy.

Giventheconsiderableperformanceimprovementand

the negligible degradationin the quality of the solution,

wepermanentlyincorporatedthisoptimizationinto M IN-

ERVA. All resultsin this paperwerecomputedon a pro-

totypewherea clusterermodulepre-processesthe input

workloadbeforethe taggerstep,anda declusterermod-

ule regeneratesthe original setof storesat the end. For

simplicity, thesestepsarenotshown in Figure4.

3 Evaluation

In theprevioussection,wedescribedtheM INERVA com-

ponents. In this one,we evaluateM INERVA’s accuracy,

performance,design,and usefulness. We first validate

theperformancepredictionsof ouranalyticalmodels,and

then use thosemodelsto explore M INERVA’s sensitiv-

ity to workload changesand the effect of alternatede-

signsfor M INERVA’s components.We concludethesec-

tion by measuringtheperformanceof a live storagesys-

temdesignedby M INERVA to supporta decision-support

databasebenchmark.

3.1 Devicemodelvalidation

In orderto validateM INERVA’s device modelpredictions

for a real disk array, we usedthe HP SureStoreModel

30/FCHigh Availability (FC-30)disk array[7] asa case

study.

An FC-30 supportstwo front-endcontrollersand up

to 30 disks,which canbe configuredinto up to 8 LUNs.
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EachLUN usesa RAID 1 (mirroring), RAID 1/0 (striped

mirroring), or RAID 5 (striping with left-symmetricro-

tatedparity) layout. For convenience,we will also use

the term RAID 1/0 for 2-disk RAID 1 LUNs. Our FC-30

has30 disksof 4 GB each,two controllersand60 MB of

cacheRAM, which wassplit 20:40betweenread-cache

and write cache; sniffing (backgroundscanningof the

disks for errors)wasdisabled. Both portsof the FC-30

arraywereconnectedby asingle1 Gb/sFibreChannelar-

bitratedloop [2] to a four-processorHP9000K410server

with 1 GB of main memoryrunningHP-UX 11.0. We

usedasyntheticworkloadgeneratorgeneratingmany con-

currentrequeststo simulatetheeffectof multipleapplica-

tionsrunningontheserver. AccurateI/O timingswereob-

tainedfrom theHP-UX in-kerneltracingfacility [20, 14].

We startedby calibratinga genericarraymodelusing

read-onlyor write-only accesspatternswith uniformly-

dispersed(“random”) requestsof varioussizes.We then

validatedthemodelsby measuringthemaximumrequest

ratessupportedby the FC-30 for a richer set of micro-

benchmarkworkloads,andcomparingthemeasurements

againstthe models’predictions. The workloadsusedin

the validation experimentvaried three parameters:re-

questsize,readfraction andrun count. They consistof

a baselineworkload(32KB requests,50%readsand,run

count= 1), plusa seriesof workloadsin whichoneof the

parameterswasvariedat a time. In addition,we applied

the workloadsto several different LUNs: 2-, 4-, and 8-

disk RAID 1/0 LUNs,and4- and8-diskRAID 5 LUNs. The

validationtestsconsistedof thecross-productof all work-

loadsandall LUNs listed in Table2—i.e. eachworkload

wasrunagainsteachLUN. Thestreamsin thisexperiment

accessthe LUN synchronously, issuinga new requestas

soonasthepreviousonehascompleted.

Figure7 shows a subsetof theresultsfrom thevalida-

tion studies(in particular, for run count= 1). TheFC-30

servicedbetween70 and360 requests/sduring theseex-

periments.On average,themodelsaremoderatelyaccu-

Storagedevice 30-diskFC-30

Arrival timeprocess AFAP (asfastaspossible)
Numberof streams At least4 perdisk
Numberof LUNs 1
Disks/ LUN 2 (for RAID 1)

4, 8 (for RAID 1/0)
4, 8 (for RAID 5)

Stripeunit size 64KB
Requestsize 8KB, 32KB, 64KB
Runcount 1, 4, 8, 32
Readfraction 0, 1/4,1/2, 3/4,1

Table 2: Workloads usedto validate the analytic LUN

models.Baselinevaluesare underlined. Thenumberof
streamsper diskwasselectedbeforehandto nearlymax-
imize throughput,and kept constantthrough all experi-
ments.
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Figure7: Relativeerror in the model’s throughputpre-
dictions, computedas (measured–predicted)/measured,
whenrequestsizesand read fractionsdeviate from the
baselinevalues. Points above the } axis representpes-
simisticmodelpredictions.
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Large,seq. Small,random
(RAID 5) (RAID 1/0)

numberof stores 125 125
storesize(GB) 2 2
numberof streams 125 125
requestSize(KB) 32 8
requestRate(IO/s) 16 16
readfraction(%) 25 25
runCount 10 1
onTime (s) 4 4
offTime(s) 2 2

Table3: Characteristicsof the syntheticbaselinework-
load usedin the scalingtestsfor M INERVA. Thework-
load consistsof 250 stores, each with one stream; 125
stores/streamsof each variety.

ratebut slightly pessimistic,with a meanerrorof
D k;~ �;� ,

andarangeof ��]l C 4��m D  #�E�c� .
3.2 Safetyand sensitivity

We usedthe validatedmodelsto examinethe effect of

scalingvariousworkloadparameterson thedesignspro-

ducedby M INERVA. We will show that for a wide range

of inputworkloadsM INERVA consistentlydesignsstorage

systemsthatsupporttheworkloadwhile usingresources

efficiently. We will alsoshow thattheresourcesprovided

by M INERVA changesmoothlyasthe input workloadre-

quirementsarevaried.

All of thescalingexperimentsstartwith thesamesyn-

theticbaselineworkload,andthenvaryonecharacteristic

at a time. We chosetheparametersof thebaselinework-

load,shown in Table3, to fulfill threecriteria. First, that

therebe a mix of storesbettersuitedto RAID 5 (large

writes) and RAID 1/0 (small writes). Second,that the

resultingsystemrequiresa nontrivial numberof arrays

(much larger than 1), therebydemonstratinghow M IN-

ERVA can configurean interestingsystem. Third, that

eachstorebe roughly balancedin its appetitefor capac-

ity anddiskbandwidth.

Anothergoalof this setof experimentsis to show that

thecapacityandperformancerequirementsof everystore

assignedby M INERVA arealwayssatisfied. This safety

propertyis equivalent to statingthat all assignedstores

passtheevaluatortest,in which analyticaldevice models

areusedto checkM INERVA’s output. Sincethe experi-

mentsdescribedin this sectionrequiremuchmore than

one disk array, and thereforecan not be physically im-

plementedin our lab (describedat thebeginningof Sec-

tion 3.1),werely onourearlieranalysisof theevaluator’s

accuracy to considerits predictionsindicative of theper-

formancewewouldobservein a realsystem.

3.2.1 Scalingstoresizeand bandwidth

Thefirst seriesof experimentsscalesthesizeof thestores

upanddown from thebaselinevalues.Unsurprisingly, for

smallstoresizestheworkloadis bandwidth-limited,while

for largestoresizestheworkloadis capacity-limited,asil-

lustratedin theuppergraphin Figure8. Thelower graph

in thefigureshows how M INERVA addressestheincreas-

ing capacityrequirements,by creatingsystemswhoseto-

tal sizescalesroughlylinearlywith thestoresize,andthat

aremostlyor completelymadeupof RAID 5 LUNs.

We scaledthe bandwidth through requestrate scal-

ing. At low bandwidths,thestorageis capacity-bound,so

RAID 5 is usedexclusively. As the bandwidthincreases,

the split into RAID 5 and RAID 1/0 disks occurs,with

thenumbersincreasinglinearly to meettheincreasedde-

mands. Figure 9 illustratesthis, showing how the sys-

temsdesignedby M INERVA adaptas the requestratein

thebaselineworkloadis scaledupanddown.

Thelow bandwidthutilizationatlargebandwidthis due

to fragmentation. As bandwidthrequirementsincrease,

fewer andfewer storesget mappedto eachLUN (andto

eacharray) as the bandwidthbecomesan increasingly

scarceresource.Thenumberof disk slotsusedperarray

remainsfairly highthroughouttheexperiments;this is be-

causediskbandwidthisabottleneckaswell, andtherefore

M INERVA needsmany disksthat areonly partially filled

with data.
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Figure 9: Array utilization and makeup when scaling
bandwidth.

3.2.2 Scalingthe number of stores

The next seriesof experimentsscalesthe numberof the

storesup anddown from thebaselinenumberof 250. As

expected,the numberof arraysscaleslinearly with the

numberof stores,and the configurationof thosearrays

also scaleslinearly, as seenin the lower graph in Fig-

ure10. Theuppergraphin thefigureshows that theuti-

lization of the arrayresourcesis consistentexceptwhen
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therearea verysmallnumberof stores.In thiscasethere

aresimplynotenoughstoresto fully exploit thearrays.

Thenumberof storesis alsotheprimaryfactorin M IN-

ERVA’s run time. As canbeseenfrom Figure11, therun-

ning time of M INERVA’s Toyodasolver algorithmsgrow

quadraticallywith thetotalnumberof stores.
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Figure11: Runningtimes(in seconds)for the individual
M INERVA componentswhenscalingthenumberof stores.

3.2.3 Varying the read/write mix

This seriesof experimentsscalesthepercentageof reads

up anddown from thebaselinevalueof
� kC� . Figure12

depictsoutputconfigurationsfor workloadsrangingfrom

all writes(0%) to all reads(100%).

The lower graphin that figure shows that as the read

fraction increases,the storagerequirementsshift from

RAID 1/0 to RAID 5. This is becausethetaggerrulesde-

terminethat, with a smallerproportionof writes, larger

RAID 5 LUNs, which usea smallerfraction of the disk

spacefor storingredundancy, provide morecapacityper

unit cost,andsoarethemorecost-effectivechoicefor this

workload.

3.2.4 Exploring workload variability

All the workloadsdiscussedso far in this sectionhave

been homogeneous:attribute values were exactly the

samefrom onestream/storeto another. We now explore

the impact of more realistic, heterogeneousworkloads.

The valuefor eachattribute for eachtype of streamand

16



0.0� 0.2� 0.4� 0.6� 0.8� 1.0�
Read fraction  ¡0.0

0.2

0.4

0.6

0.8

1.0

U
til

iz
at

io
n¢

Avg(LUN capacity)
£
Avg(Peak utilization)
£
Avg(Peak array bandwidth)
£

0.0 0.2 0.4 0.6 0.8 1.0

Read fraction  ¡0

50

100

150

200

N
um

be
r 

of
 d

is
ks�

Total disks
�
RAID 5 disks
RAID 1/0 disks
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thereadfraction.

storeis drawn at randomfrom a log-normaldistribution.

Themeanvalueof thedistributionsarethebaselinevalue

for the attributes,from Table3. The standarddeviation

of thedistributionsarethescalefactortimesthebaseline

valuefor thatattribute;thescalefactorrangesfrom 0 to 1.

Themeanvalueof thedistributiondoesnotchangeasthe

varianceincreaseswith the scalefactor. The preceding

experimentsin this sectionhad always useda standard

deviation of zero. Sincethevaluesaredrawn at random

for this section,the experimentis repeated5 times,and

theresultsaveraged.

As the variability increases,the capacity utilization

drops, while the numberof storesassignedto RAID 5

LUNs increases,as seenin Figure 13. This has two

causes. First, the baseRAID 1/0 streamsare relatively

close to triggering the taggerrule that detectscapacity

boundworkloads. By eitherdecreasingthe requestrate,

or increasingthe capacity, this rule is triggered,andthe

storeis taggedasRAID 5 (seeFigures8 and9). Second,

whenthestoresizesareuniform, it is alwayspossibleto

pack the 2 GB storesefficiently onto LUNs built out of

4GB disks.Butasthestandarddeviationof thestoresizes

increase,suchanoptimalpackingbecomeslesslikely, de-

creasingthecapacityutilization.

3.2.5 Summary of safetyand sensitivity experiments

The experimentsin this sectionconfirm that M INERVA

designssystemsthat meetworkload requirements,pro-

vide resourcesthat matchthe workload needs,and use

RAID 5 or RAID 1/0 storageappropriately. M INERVA’s

solutionsadaptsmoothlyto increasingworkloadrequire-

mentsand to variations in other characteristicsof the

workload. Exceptfor someedgecaseswhenfragmenta-

tion makessomeinefficiency in resourceusageinevitable,

M INERVA generallyproducessolutionsthat meetwork-

loadrequirementswithoutsignificantoverprovisioning.

3.3 Evaluating the M INERVA designchoices

Therearemany componentsin M INERVA (seeFigure3)

with multiple possibledesignsfor eachcomponent.To

evaluatethe effect of our designchoices,we considered

alternativedesignsfor eachof thecomponents.Westarted

with the baselinesetof M INERVA componentsandthen

variedeachof themin isolation.We comparedthecostof

the resultingsystemdesignsfor a setof five workloads,

usingpublishedlist prices. Table4 shows the alternate

componentsthatwereevaluatedfor thisstudy.
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Figure13: Arrayutilizationandmakeupwhenscalingthe
varianceof all workloadattributes.

Component Selections
Tagger IOPSdisk, allR10,allR5,random
Allocator Branchandbound, branchandboundbias

dedicated,all dedicated
Solver Toyoda, Toyodaweighted,random
Optimizer Toyodaweighted, simplerandom,simple

balance

Table4: Thealternatechoicesfor M INERVA components
usedto evaluatethedesign.Thebaselinecomponentsare
underlined.

3.3.1 Workloads

Theworkloadsusedin theseexperimentsarebasedon a

combinationof tracesandmodelsof a diversesetof ap-

plications: an active filesystem(filesystem), a scientific

application(scientific), an on-line transactionprocessing

benchmark(oltp), a parallelizeddecision-supportbench-

mark (dss-p), and a lightly-loadedfilesystem(fs-light).

Table5 summarizestheperformancecharacteristicsof the

workloads.

The filesystemworkloadis an extrapolationof a trace

of our localfile server, whichwasusedto createthebase-

line attributesfor a file systemstreamandstore.We then

addedthreescalingparameterswhichenabledcreationof

a heterogeneoussetof streamsandstoresto representa

widevarietyof file systemusage.Thefirst scalingparam-

eterwasthenumberof users(default 1); a largernumber

of userstranslatesinto largerrequestrates,andlongeron

times.Thesecondparameterwasthepercentageof large

files in thefilesystem(default 15%);a greaterpercentage

of largefileswill causelargerrequestsizesandlargerrun

countsin theworkload. Finally, the third parameterwas

simply the sizeof the store(default 1GB). We createda

heterogeneousset of 140 streamsandstores,with store

sizesrangingfrom .25 to 1.2 GB, the numberof users

rangingfrom 4 to 100, andthe percentageof large files

rangingfrom 5% to 35%. We took this asrepresentative

of a heterogeneousfile systemworkload. The resulting

workloadincludedmoderatesizerequests(20 KB on av-

erage),andlittle sequentiality. Thefs-lightworkloadrep-

resentsa largerfilesystembeingaccessedlessintensively;

it wascreatedin a similarway.

Theoltp anddssworkloadsareboth takenfrom traces

of databasebenchmarks.For oltp, we modeledtheTPC-

C benchmark[8] tracesanalyticallyto createa workload

generator. We thengenerateda TPC-Cworkloadcorre-

spondingto roughly 30 usersand 400 transactionsper

minutefor usein ourtests.TPC-Cis anapplicationwith a

highrateof random,read-mostlyaccesses.Workloaddss,
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Workload Capacity(GB) #stores#streamsReq.size(KB) Runcount Reads(%)
filesystem 85.7 140 140 20.0 (13.8) 2.6 (1.3) 64.2
scientific 186.3 100 200 640.0 (385.0) 93.5 (56.6) 20.0
oltp 192.5 194 182 2.0 (0.0) 1.0 (0.0) 66.0
dss-p 49.6 316 224 27.6 (19.3) 57.7 (124.8) 98.0
fs-light 156.6 170 170 14.8 (7.3) 2.1 (0.7) 64.1

Table 5: Characteristicsof workloadsusedin the evaluationof M INERVA’s baselinecomponents.“Run count”
is the average numberof consecutivesequentialaccessesmadeby a stream. Thusworkloadswith low run counts
(filesystem, oltp, fs-light) haveessentiallyrandomaccesses,while workloadswith high run counts(scientific) have
sequentialaccesses.dss-phasboth streamswith randomand sequentialaccesses.Theaccesssizeand run count
columnslist themeanand(standard deviation) for thesevaluesacrossall streamsin theworkload.

representingdecisionsupportsystems,was taken from

tracesof our TPC-D-inspiredbenchmark,describedin

moredetail in Section3.4. This benchmarkis character-

ized by long, complex databasequerieswith interesting

phasingbehavior. Someaccessesareextremelysequen-

tial, andsomequite random. To obtaina dssworkload

of largeenoughscalefor theseexperiments,we took two

suchtracesand combinedthem to make a single large

workload.

3.3.2 The tagger

We comparedthe rule-basedtagger presentedin Sec-

tion 2.4 with three naive taggers: one that labeledall

storesasRAID 5, onethat labeledall storesasRAID 1/0,

andonethatlabeledstoresat random.Table6 showshow

thevarioustaggersclassifiedtheworkloads.

The different rules which the various taggersused

sometimesgave very different storagelayouts for the

various workloads. For example, the scientific work-

load (which has many large sequentialwrites) is best

suitedfor RAID 5 storage,while the filesystemandoltp

workloads(which have many small randomwrites) are

betterservedwith a RAID 1/0 layout.For thedss-pwork-

load all of the taggersresultedin configurationswith

nearly the samecost. This is becausefor this read-

dominatedworkloadRAID 5 LUNsandRAID 1/0LUNscan

provide roughly the sameeffective throughputper disk,

so the choicebetweenthe two is arbitrary. In practice

RAID 1/0 might bepreferredfor its superiorperformance

in degradedmode,althoughM INERVA doesnotcurrently

take this into accountexplicitly.

Table6 shows that in all cases,the rule-basedtagger

doesaswell or betterthanany of thenaive taggers.The

naive taggersdo almostaswell asthe rule-basedtagger

on someworkloads,althougheachperformspoorly on at

leastone,generatingconfigurationswhicharemorecostly

thantaggerswhichadaptto thedifferentrequirements.

3.3.3 The allocator

We evaluatedthetwo allocatorspresentedin Section2.5:

branch-and-boundfirst attemptsto usearrayswith mixed

storageclasses,while branch-and-bound-bias-dedicated

prefers using arrays dedicatedto one RAID level, but

will usemixed arraysif they provide a betterfit to the

workload. We alsoconsidera naive allocator(All dedi-

cated) thatproducesa setof dedicatedRAID 5 arraysand

RAID 1/0 arrays,but no mixedarrays.We hadalsocon-

siderednaiveallocatorsAllR5andAllR10thatignoredthe

informationprovidedby thetaggers,but sincetheireffect

is similar to that of usingnaive taggers,we will not dis-

cussthemfurther. Table7 summarizesthefiveallocators.

Figure14showsthesystemcostfor eachof thealloca-

torsondifferentworkloads.Thefigureshowsthatthetwo

versionsof thebranch andboundallocatorsconsistently

producethe lowestcostsolution;thereis little or no dif-

ferencebetweenthem. Thenaive all-dedicatedallocator

producesa highersystemcostsolutionin severalcases.
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Tagger filesystem scientific oltp dss-p fs-light
R5 R1/0 $ R5 R1/0 $ R5 R1/0 $ R5 R1/0 $ R5 R1/0 $

IOPSdisk 60 80 422 100 0 310 42 194 748 316 0 140 170 0 170
All R5 140 0 576 100 0 310 194 0 1101 316 0 140 170 0 170
All R10 0 140 488 0 100 340 0 194 746 0 316 148 0 170 255
Random 69 71 544 45 55 380 100 94 990 168 148 148 87 83 244

Table6: Comparisonof storage classificationsandfinal systemcost(in thousandsof dollars) by thevarioustaggers
onseveral realisticworkloads.

Allocator Description
Branch andbound Considermixedarraysfirst, thendedicatedarrays
Branch andbound—biasdedicated Considerdedicatedarraysfirst, thenmixedarrays
All dedicated Designonly dedicatedarrays

Table7: Alternativeallocatordesigns.

filesystemª scientific oltp« dss-p¬ fs-light
0

200

400

600

800

S
ys

te
m

 c
os

t (
k$

)



Branch and bound
B&B -- bias dedicated
All dedicated
®

Figure14: Comparisonof systemcostfor variousalloca-
torsonseveral realisticworkloads.

3.3.4 The solver

We evaluatedthe threesolverspresentedin Section2.6.

Figure15 shows the systemcost for eachof the solvers

on differentworkloads. Thereis very little, if any, dif-

ferencefor eachof theworkloadspresented.After clus-

tering,aggregationsof multiple input storesendup being

very similar in size. Only in the (lessfrequentcases)in

which bandwidthrequirementslimit clustersizethereis

filesystemª scientific oltp« dss-p¬ fs-light
0

200

400

600

S
ys

te
m

 c
os

t (
k$

)



Toyoda
Toyoda weighted
Simple random

Figure15: Comparisonof systemcostfor varioussolvers
onseveral realisticworkloads.

room for differentbin-packersto make slightly different

decisions.

3.3.5 The optimizer

Figure16shows themaximumoverall LUNs of peakuti-

lization for the threeoptimizationalgorithmspresented

in Section2.7. For a fixed numberof LUNs, the lower

themaximumpeakutilization,thebettertheloadbalance.
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Figure16: Comparisonof maximumLUN utilization for
variousoptimizers on several realisticworkloads.Lower
bars reflecta betterloadbalance.

For mostof theworkloads,Toyodaweightedproducedthe

mostbalancedconfigurationsaccordingto this metric; in

onecase,the differencebetweenthe threeoptimizeral-

gorithmsis small. Simplerandomis sometimespoorly

suited to optimizing load balance,becauseit fills each

LUN beforemoving onto the next. As a resultthis algo-

rithm doesnot achieve asgooda load balancefor some

workloads.

3.3.6 Summary of componentdesign

We foundthatusingM INERVA’sbaselinecomponentsre-

sultedin systemdesignswith low cost. In thecaseof the

fs-lightworkload,thecapacityof everydisk in thesystem

generatedwasfully utilized, resultingin a systemthat is

provably of the lowestpossiblecost. The dss-psolution

requiredonly 28 disks(with a possibleminimumof 24),

spreadacrosstwo arrays. Two arrayswerenecessaryas

the aggregateworkload bandwidthrequiredwas higher

thana singlearraycontrollercould sustain. We believe

thattheseresultsdemonstratethatM INERVA cangenerate

low costdesignsthatareguaranteedto meettheworkload

requirements.

Theexperimentspresentedin this sectioncover only a

smallportionof thespaceof possibleworkloadsandpos-

siblecomponentdesigns.In thefutureweplanto consider

both a broadersetof workloadsandmoresophisticated

components.In particular, as workloadsbecomemuch

larger, andtheassignmentspacebecomeslarger, we may

needbetteralgorithmsthatsearchmoreselectively.

3.4 Whole-systemvalidation

The previous two sets of experimentshave used mi-

crobenchmarks,evaluatedusing analyticalperformance

models.While thiskind of evaluationis helpful for show-

ing how a systemrespondsto particularkindsof input or

changes,it doesnot guaranteethat thesystemworksasa

whole. We addresswhole-systemvalidationby configur-

ing a systembasedon measurementsfrom a realapplica-

tion runningonahand-configuredsystem,thenre-running

theapplicationto ensurethatperformanceis asexpected.

Section3.4.1 describesthe applicationwe selectedfor

this validation;Section3.4.2shows how a humanexpert

configuredtheinitial system;Section3.4.3thendescribes

how M INERVA improvedonthatconfiguration.

Theexperimenttestedthreehypotheses:

1. Theresourcesusedin the M INERVA-generatedcon-

figuration will be no more costly than that of the

hand-configuredsystem.

2. Applicationperformanceonthegeneratedconfigura-

tion will becomparableto thehand-configuredsys-

tem.

3. Theconfigurationtoolswill find asolutionin ashort

time,with minimalhumaneffort.

Thestepsof theexperimentareshown in Figure17. Since

wewantedto measurearealsystem,wewererestrictedto

the physicalresourcesavailable to us, which meantthe
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Figure17: Stepsin theend-to-endvalidationtest.

singleFC-30arraydescribedin Section3.1. This means

that M INERVA cannotreducethe numberof disk arrays;

it canonly improvetheperformanceof theapplication,or

reducethe numberof disk drivesusedwithin the single

array.

3.4.1 The application

We developeddss, a decision-supportbenchmarkbased

loosely on TPC-D [9], as a suitably realistic applica-

tion. TPC-Dis a well-known benchmarkthatsimulatesa

wholesalesupplierdatabasewith long-running,complex

querieson large tables,and exhibits interestingphasing

and concurrency effects. In addition, it hasthe advan-

tageof repeatabilityand is an openspecification. This

benchmarksimulatesa setof quasi-ad-hocdecisionsup-

port queriesagainsta largedatabase.TheTPC-Dbench-

mark consistsof 17 differentquerieson the data,which

modelvariousbusinessquestionsthat could be asked of

thedata,alongwith astreamof two differentkindsof up-

datetransactions.

For our work, we omitted the update functions

and picked a subsetcomprising 12 of the 17 TPC-D

queries(we includedonly thosequeriesthat completed

in lessthanonehour.) We believe that thesequeriesare

a sufficient representationof a complex decisionsupport

application. To supportthis, somepreliminary perfor-

mancepredictionsindicatethatour dssworkloadis well-

balancedin that it appearscapacity-boundon small, fast

disks,andbandwidth-boundon large,slow ones.

Thetwelvequeriesweredividedinto threeparallelexe-

cutionqueues,with four queriesin eachqueue(queries2,

3,13,14 in queue1; 4,8, 15,17 in queue2; and6,11,12,

16 in queue3), so thatexpectedexecutiontime wasbal-

ancedacrossthe queues.This alsoreplicatesreal-world

parallel query executionbetter than the regular TPC-D

benchmarkallows.

Themeasurementsweretakenon thesameserver and

disk arraydescribedin Section3.1. Thebenchmarkwas

run on Oracleversion8.0.5. We usedthe HP-UX inter-

nal tracefacility to collect tracesof systembehavior in

orderto obtaindetailedworkloadcharacterizations.The

benchmarkhad158storeswith a totalcapacityof 25GB,

and 112 streamswith significant correlationsand anti-

correlations.Thestoresaremappedto LUNs usingLVM,

HP-UX’s logical volumemanager.

Thepresentedresultsaretheaveragesof five runs;we

saw standarddeviations on individual query execution

timesrangingfrom 0.4%to 12%(for theshorterqueries

that took lessthan3 minutesto complete),althoughthe

typical standarddeviation waslessthan4%. Themetrics

for eachrun wereindividual querytimesandtheir arith-

meticmean.

3.4.2 The initial configuration

The initial manualconfigurationwasdevelopedwith the

advice of experts in Hewlett-Packard’s systembench-
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Configuration RAID 1/0 RAID 1 RAID 5
(4 disk) (2 disk) (4 disk)

Humanexperts 7 1 –
M INERVA baseline – – 4
M INERVA all RAID 1/0 4 – –

Table8: LUN typesand numberof LUNs for the hand-
configured,baselineM INERVA and RAID 1/0 only M IN-
ERVA configurations

marking teamthat producesthe auditedTPC-D bench-

marks.Theconfigurationis similar to theconfigurations

usedfor official TPC-Dbenchmarkreports,but adjusted

for the sizeof the databaseandtheavailablestoragede-

vices.

Thehand-configuredsystemtriestomaximizepotential

parallelismby striping dataaswidely aspossibleacross

all the disksin the array. It usesa singleFC-30disk ar-

ray, divided into 7 LUNs of 4 diskseach,all configured

asRAID 1/0, with the remainingtwo disksconfiguredas

an eighth RAID 1 LUN. It further tries to exploit paral-

lelismby stripingdataaswidely aspossible;hence,LUNs

1 through6 all containpartof mostof thedatabasetables.

Small tableswerecollectedonto LUN 8, andLUN 7 was

usedastemporarytablespace.Thecapacityutilizationof

about42%isnotuntypicalfor decision-supportdatabases.

Table8 showsthetypesof LUNs for thisconfiguration,

and includesthe M INERVA-generatedconfigurationsfor

comparison(thesearedescribedin detail in thefollowing

section).

3.4.3 Automatically-generatedassignments

To generateaworkloadfor M INERVA, wecollectedtraces

whenthequerieswererun on thehand-generatedconfig-

uration,andcalculatedvariousattributesusingour work-

loadcharacterizationtool.

This workloadinformation,plusdevice-specificinfor-

mation on the FC-30 array, was run throughM INERVA

twice. Thefirst runusedthebaselinecomponentsof M IN-

ERVA, asdescribedin Section3.3; M INERVA designeda

systemusingRAID 5 storageonly. For comparison,asec-

ondconfigurationwasgeneratedwith the restrictionthat

it generateanall RAID 1/0array.

In both casesM INERVA producedoptimized config-

urations that significantly reducethe number of disks

needed:thebaselineconfigurationusesfour RAID 5 LUNs

of four diskseach,andtheall RAID 1/0configurationalso

usesfour LUNs of four diskseach. A detailedexamina-

tion of the assignmentshows that M INERVA stripesta-

ble typesacrossmultiple LUNs, althoughnot asaggres-

sively asthe the humanexperts’ layout. This is because

M INERVA takesinto accountthe workloadrequirements

of thestreamaccessingeachtablewhenassigningtables

to LUNs. Many of thetableshaveonly a smallnumberof

accesses,andM INERVA tendsto put a largerproportion

of thesetablesona singleLUN.

M INERVA producedthesesolutionsin 10to 13minutes

each.

3.4.4 Evaluation

To evaluatethequality of theassignmentwhich waspro-

ducedby M INERVA, we considerboth query execution

timesandtheper-streamaveragesfor requestrateandre-

sponsetime.

The graph in Figure 18 shows individual query exe-

cution times for all threeconfigurationsas well as the

correspondingarithmeticmeanvalues.Comparedto the

human-generatedconfiguration,the meanquerytime in-

creasedby 1.9%for thebaselineM INERVA configuration,

anddecreased(improved) by 2.5% for the all RAID 1/0

configuration.

We looked at changesin the requestRate,requestSize

andrunCountattributesbecausetheseattributescansig-

nificantly influencepredictionsfor individual device uti-

lizationsand,asa result,theassignmentdecisions.

As expected,therewere no noticeabledifferencesin

valuesof therequestSizeandrunCountattributefor these

two configurations.Valuesof requestRateattributeswere
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significantlydifferentonly in few cases(whichcanproba-

bly beattributedto normalvariancein applicationbehav-

ior), asshown by thegraphsin Figure19.

Likewise, there is a visible discrepancy for a few

streamsin the responsetimes (Figure 20). This dis-

crepancy mayexplain theslight slowdown of thebench-

mark underthe M INERVA configurations,especiallyfor

themixedcase.

The resultsshow that M INERVA was able to reduce

resourceconsumption(numberof disksused,andthere-

fore systemcost), while preservingthe performanceof

the human-generatedconfiguration. A detailedexam-

ination of the resultsand workloadsshow that it uses

two maincharacteristicsof theworkloadto achieve this.

First, it tendsto combinestoreswith differentcharacteris-

tics(capacity-boundversusbandwidth-bound)thatareac-

cessedsimultaneouslyon thesameLUN. Second,it uses

the knowledgeof phasingbehavior andanti-correlations

betweenstreamsto colocatestoresthat don’t interfere

with eachother, while separatingstoreswhoseaccesspat-

ternsarecorrelatedonto separateLUNs. This improves
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Figure19: Comparisonof variousstreamrequestRateat-
tributevaluesfor TPC-Dbetweena hand-generatedarray
configuration and M INERVA-generatedarray configura-
tions(baselineusingRAID 5,andRAID 1/0only). Streams
are presentedin orderof increasingattributevaluein the
original configuration.

loadbalance,not just on average,but alsoduringthevar-

iousphases.

A humanexpertwith accessto thesameworkloadchar-

acterizationdatathat M INERVA useswould probablyde-

sign a similarly efficient system. Even for this small

benchmarkexample(158stores),however, thecombina-

torial complexity is likely to bedauntingfor a human;for

largersystemsthetaskbecomesevenmoredifficult.

TheexperimentalresultsdemonstratethatM INERVA is

capableof handlingcomplex, real-lifeworkloadsandgen-

eratingreasonablelayouts in a completelyautonomous

fashionin a shorttime. It produceda configurationthat

usedsignificantlyfewer devices,without resultingin sig-

nificant application-level performancedegradation. Al-

thoughtheresponsetimesperstreamvariedfromtheorig-
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Figure20: Comparisonof deviceresponsetimesfor TPC-
D betweena hand-generated array configuration and
M INERVA-generatedarrayconfigurations(baselineusing
RAID 5, andRAID 1/0only).

inal configurationin a few cases,theexecutiontimesfor

eachof thetwelvequerieswerecomparable.

4 Relatedwork

Gelb [13] inspiredmuchof our work, by suggestingthat

the logical view of databe separatedfrom physicalde-

vicecharacteristicsto simplify theuseandadministration

of storage. To the bestof our knowledge,no existing

tool will automaticallydesignandconfigurestoragesys-

tems.Commercialproductsfor storagemanagementsuch

as IBM Tivoli, HP SureStore,CompaqSANworks, CA

Unicenterand HighGroundStorageResourceManager,

providesomedegreeof abstractionfor thestoragedevices

anddata,aswell assomemanagementtools. However,

theseproductsjust allow systemadministratorsto imple-

menttheir device configurationanddataplacementdeci-

sionsmoreeasily;a humanis still requiredto make most

decisions.

Previous researchhasappliedoptimizationtechniques

to the file assignmentproblem. Files, typically charac-

terizedby theprobabilitythatthey will beaccessedfrom

particularnodesin a network, aremappedto storagede-

viceswith theaim of optimizingsomeobjective suchas

communicationoverheador reliability [3, 10, 19]. Our

work is most closely relatedto the variant where files

characterizedby sizeandaccessrateareplacedonagiven

setof storagedevices,with theaim of minimizingaccess

latency or maximizingthroughput[24]. However, these

approachesdo not designthe systemthatwill efficiently

provide theneededquality of service;they make useof a

givensystemsothatanobjective function is maximized,

regardlessof applicationrequirements.We alsoallow a

richer characterizationof applicationbehavior than has

beenconsideredin thepast,includingmeasuresof local-

ity, ON-OFF phasingandcorrelationsbetweenworkloads.

In addition,M INERVA alsohandlesdisk arrays,not just

simpledisk drives,andoptimizestheirparametersettings

aswell asthedataplacement.

M INERVA is thefirst publishedapproachwhichrecasts

the resourceprovisioning problemin a constrainedop-

timization framework. Becauseof that, we have eval-

uateddiversestandardoptimizationtechniquesto deter-

mine how suitable they were for this particular prob-

lem. Our problemcanbeviewedasa variantof a multi-

constraintknapsackorof amultidimensionalbin-packing.

As such,wehaveadaptedseveralstandardheuristicsto fit

ourspecificproblem.For example,weusetraditionalbin-

packingheuristics[6] suchasrandomizedandgreedyver-

sionsof a basicfirst-fit algorithm. We have alsoadapted

the gradientmetric of [22] to work with our non-linear

constraints.Othercommonheuristicapproachesinclude

simulatedannealing[11], relaxationapproaches[23, 19]

andgeneticalgorithms[5]. We have tried geneticalgo-

rithmsfor our problem,but foundthat they did no better
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thanthesimplerandfasterheuristicspresentedin thispa-

per, becauseof thehighcostof evaluatingeachtrial solu-

tion.

We useanalyticalmodelsof storagedevicesto predict

thethroughputthata storagedevicecandeliverasa func-

tion of theworkloadbeingimposedon it. Therehasbeen

considerablework in analyticalperformancemodelingof

disk arrays(e.g. [15, 21, 17]), but the majority of these

studiesare restrictedto far simpler workloads(suchas

Poissonrequestarrivals)thanthosewesupport.Wefound

thatsuchsimplisticworkloadmodelsresultedonhighpre-

diction errorsfor our real-life workloads,hencetheneed

to capturemoreaspectsof workloadsanddevices.

5 Conclusions

Configuringandplanninglargestoragesystemsby hand

is a lengthyprocess,proneto errorsandguesswork, and

thereis no goodway to evaluatethequality of theresults

shortof building the system—whichis expensive, slow,

andnotalwayspossible.M INERVA addressesall of these

issues:it designsstoragesystemsthat areasgoodasor

better than the onesproducedby people; it doesso in

minutesratherthandays;andit accompaniesthemwith

predictionsof the resultingsystem’s performance.This

makesM INERVA capableof providingsubstantialsupport

for the resource-provisioningstepof storagesystemde-

sign.

Ourevaluationof M INERVA showedthat:¼ it cangenerategood(andsometimes,provably op-

timal) configurationsover a wide rangeof synthetic

workloads,aswell asa complex, multi-phasereal-

world benchmark;¼ thesetof attributesusedto describestoragedevices

and workloadsseemsto capturewhat is neededto

makegoodconfigurationdecisions;¼ the sequencingof tasks(choosingthe storagede-

vices,configuringthem,andplacingdataontothem)

is aviablewayof breakingthecirculardependencies

betweentheassignmentandconfigurationsubtasks;¼ thechoiceof algorithmsin eachof the components

was important, and the choicesusedin M INERVA

wereappropriatein mostareas(save that thesimple

randomheuristicwasslightly betterthanToyodafor

thesolverstep).

The experimental results with the dss benchmark

demonstratedthat M INERVA is capableof handlingreal-

istic workloads. For this test case,M INERVA produced

two configurationsin a relatively short amountof time

that hadperformancecomparableto the hand-generated

one,andweremuchcheaper. Thiswasdonewithoutover-

simplifying the problemor its solution: for example,all

threeconfigurationsspreaddatabasetablesovermultiple

LUNs. The M INERVA solutionalsoaccuratelypredicted

theperformanceof theresultingstoragesystem.

In our futurework, weplanto try backtrackingsolvers;

to generalizethe current taggerand allocatorheuristics

to supporta wider rangeof arrays;to extendour device

modelsto increasetheir accuracy, broadentheir scope,

and improve their efficiency; and to extend the work-

load requirementsto include reliability. Another possi-

ble improvementis to make M INERVA handleotheropti-

mizationobjectivesthanminimizing thepurchasecostof

the system(e.g. “minimize yearly managementcosts”).

Thisextensionimpactsalmostall of thecurrentM INERVA

components;in the generalcase,the objective would be

anotherinput suppliedby thesystemadministratorto our

tool. We believethatour formulationasaconstrainedop-

timizationproblemis powerful enoughto handleall these

extensionswithout fundamentalchanges.We arealsoen-

gagedin gatheringalibraryof realworkloadswith hetero-

geneity, phasing,andcomplicatedaccesspatternsto drive

M INERVA to its limits.

Althoughprogressis neededbeforehuman-staffed ca-

pacityplanningcentersbecomeobsolete,M INERVA gen-

eratesgood storagesystemdesignswith much lessex-
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penseandtime than is the casetoday. Our resultsindi-

catethat M INERVA is an importantsteptowardstheulti-

mategoalof developinga fully-automatedcapacityplan-

ning system. Of equalimportance,M INERVA was able

to successfullypredicttheresultingsystem’sperformance

beforeit wasbuilt. We concludethat automaticstorage

systemconfigurationis bothfeasibleandpromising.
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