
Automating data dependability

Kimberly Keeton and John Wilkes
Storage Systems Department, Hewlett-Packard Laboratories, Palo Alto, CA, USA

{kkeeton,wilkes}@hpl.hp.com

Abstract

If you can’t make your data dependable, then you can’t make your computing dependable, either. The good news is that
the list of data protection techniques is long, and growing. The bad news is that the choices they offer are getting more
complicated: how many copies of data to keep? whether to use full or partial redundancy? how often to make
snapshots? how to schedule full and incremental backups? what combination of techniques to use? The stakes are
getting higher: web access means that services must have 24x7 availability, and users are willing to switch if services
are unavailable. Finally, human administrators can (and often do) make mistakes. These factors compel us to simplify
and automate data dependability decisions as much as possible.

We are developing a system that will automatically select which data protection techniques to use, and how to apply
them, to meet user-specified dependability (i.e., reliability and availability) goals. This paper describes our approach
and outlines our initial descriptions for user requirements, failure characteristics and data protection techniques.

1 Motivation

A dependable system is one that just works: it does
what you want, when you want it, to meet your needs.
More and more, those needs are associated with access to
information – without that information, highly
dependable endpoints are useless. Getting it wrong is
expensive: e-commerce sites, such as Amazon.com and
ebay.com, may lose up to $200,000 per hour of
downtime, and financial services may lose as much as
$2.5M to $6.5M per hour of downtime [11].

The information had better be reliable, too – “losing”
data is even worse than failing to provide access to it
when it is needed. Many businesses, including financial
institutions, pharmaceutical companies, and trading
companies, must retain data for multi-year periods to
meet legal requirements. As a result, losing data may
have far-reaching ramifications.

This paper describes our approach to the data
dependability problem. We concentrate on enterprise-
scale storage systems, because their information needs
affect so many of today’s computing services. Today’s
enterprise storage systems range in size from many
terabytes to a few petabytes of storage, with high rates of
growth. Storage users demand predictable performance,
very high availability, and extreme levels of data
reliability. The sheer size of the systems means that
administrators want more cost-effective and high-
performance solutions than the traditional solution of
“copy everything to tape.” Administrators also want
techniques to protect against important problems, such as
user and software errors. For example, in today’s SAN-
connected systems, mirroring defends against device
failure, but still propagates mistakes or software errors.

Over the last decade, the set of data protection
techniques has increased significantly. In addition to
traditional tape-based backup, online techniques using
high-density disks and incremental snapshots are

becoming attractive, as the price of disk storage capacity
plummets [10]. Geographic distribution, replication and
partial redundancy through RAID levels or erasure codes
have also been enabled by cheaper wide area network
performance.

Each technique provides some portion of the
protection that is needed; combined, they can cover a
much broader range. The key question, then, is how to
determine the appropriate combination of different
techniques to provide the data protection desired by the
user. For example, one popular combination includes
local RAID-5, remote mirroring, snapshot and backup to
tape. RAID-5 provides protection against disk failures,
remote mirroring guards against site failures, snapshots
address user errors, and tape backup protects against
software errors and provides archival.

data
protection
design

user/business
requirements

protection
techniques

failure
types

design
system

specification specification

specification

Figure 1: our approach to automating data
dependability.

Data
performability

Data
reliability

Outage frequency
& duration

Important
failure scopes

Replication

RAID 5

Snapshots

Erasure
codes

Backup

Hardware failure

Software failure

Human error

Price

To appear in 10th ACM-SIGOPS European Workshop, Saint-Emilion, France, September 2002.

2

Selectivity in picking techniques matters – assigning
different levels of protection to different kinds of
information can save money or free up resources for
providing more protection to important data. The mixture
of techniques needs to change over time as user and
business requirements change, as the environment
changes and as new techniques become available.
Unfortunately, the mix of techniques is too rich for
people to reason about well, with the result that they
either grossly over-provision, or accidentally omit
coverage for events that later destroy their data. The
former is merely expensive – storage systems typically
comprise about half of the capital cost of current
computer systems, with even higher operational costs.
The latter can be catastrophic.

2 Our approach

We believe there is a better way: instead of asking
humans to perform large-scale, complicated optimization
problems, get the storage design system to help:

• Instead of asking people to describe how to
implement data protection, have them specify their
needs to the storage system, and let the system
determine which implementation best meets them.

• Instead of asking people to reason about infrequent
failure events, have them specify how available and
reliable data must be, and let the system figure out
which failures must be handled to meet these goals.

• Instead of expecting people to choose between
available techniques and reason about their side-
effects and interactions, let the system automatically
choose the appropriate techniques, and incorporate
new techniques as they become available.

• Instead of expecting people to monitor the system,
and adapt its implementation to unexpected changes
such as increased failure rates for a component, get
the storage system to do it.

Figure 1 illustrates this automatic goal-directed
design process. We have successfully applied this
methodology to performance-related storage goals [1, 2,
3]. We believe the time is right to extend it to
dependability. In particular, we concentrate on the
reliability (whether the system discards, loses or corrupts
data) and performability (whether the data can be
accessed at a particular performance level at a given time)
aspects of dependability [5].

We focus here on reliability and performability for
data, rather than for applications. Even though users
ultimately care about their end-to-end service needs, data
dependability is a prerequisite for application
dependability. We choose to start here because the
narrower storage interface may provide more
straightforward solutions, and these solutions will benefit
a wide range of applications. We begin by examining the
block-level storage system, and plan ultimately to extend
the approach to higher-level data from file systems and
databases.

2.1 Automating data dependability

Our approach to automating this problem has five
main components (see Figure 1):

1. A description of the user’s requirements (a
requirements specification) for data performability
and data reliability.

2. A description of the failures to be considered,
including their scope and likelihood of occurrence.

3. A description of the data protection techniques
available, including what failures they can tolerate,
and how they recover from these failures.

4. A design system: a set of tools, including ones that
select which techniques to use to satisfy the
requirements.

5. The output is a data protection design specifying
which data protection techniques should be deployed
against which pieces of data and parameter settings
(e.g., frequencies, retention times, etc.)

We note that the user is involved in only the first
component, specifying the data protection requirements.
Users may optionally designate that certain failures are
important (e.g., electric utility unreliability may be
problematic at a site), or conversely, unimportant (e.g.,
hurricanes in California are infrequent). They may also
optionally express preferences for certain data protection
techniques over others (e.g., from manufacturer X instead
of Y). The underlying storage design system is
responsible for enumerating and describing failures and
the behaviors of the data protection techniques.

To automate the process of data dependability, our
specifications for user requirements, failures and data
protection techniques are made in a quantitative,
declarative fashion [16]. Although the storage design
system can work with only partial specifications for any
of the components, more detailed information will lead to
higher quality data protection designs.

2.2 The storage design system

The storage design system is a suite of tools that
chooses (or, initially, assists with choosing) data
protection techniques that meet the specified goals. We
view the problem as an optimization one, by analogy to
our earlier work on storage system design for
performance [1, 3]. We envision a solution including the
following tools:

– user interrogation tool: a graphical user interface
(GUI) that asks users what they want, and then
maps their intuitively specified goals into a
quantitative specification. This tool removes the
need for users to supply reams of numbers.

– design checker: this tool applies well-known
modeling techniques [9] to predict whether a data
protection design will satisfy a set of user goals.

– design comparator: using the design checker, this
tool determines which of two designs more
effectively meets the user’s goals.

3

– design tool: this tool uses optimization techniques
to automatically find the best data protection design
to satisfy the user’s goals, employing the design
comparator to compare alternative designs [1, 3].

The design tool produces a data protection design,
which records the design decisions, including what
techniques should be applied to each data object and how
the technique configuration parameters should be set.
Given such a design, several additional management
tools are desirable:

– configuration tool: this tool implements the design
created by the design tool, including executing
storage system and host configuration commands
and potentially migrating data to the appropriate
devices.

– solution monitoring tool : once a data protection
design has been deployed, this tool monitors the
solution to determine whether the predicted
behavior is realized and whether environmental
failures occur as expected.

– adaptive management: the design tool,
configuration tool, and solution monitoring tool can
be used in concert to provide an iterative approach
to adapt to changes in requirements or the
environment [2].

3 Specifications for automating data
dependability

In this section, we provide a brief overview of our
approach’s declarative specifications for user
requirements, failures and data protection techniques.

As described in [16], we believe it is necessary to
distinguish between the following when specifying users’
data dependability requirements and data protection
techniques:

• the content we are trying to protect (called data)

• the access patterns to the content (called streams)

• the containers in which data resides (called stores)

Distinguishing between data and stores allows us to
separate the requirements of the content from the
properties of the container. Data descriptions include
attributes such as capacity, data loss rate, retention and
expiration times, and recovery dependencies; they are
described more in Section 3.1.1. Store properties, which
are provided by the underlying data protection
techniques, are described in more detail in Section 3.3.

Describing data separately from streams allows us to
separate reliability from performability. Our primary
technique for specifying data accessibility is the use of
stream performability requirements, which indicate how
often certain performance levels should be achieved [17].
These stream requirements are described in more detail in
Section 3.1.3.

Figure 3 (in the appendix) is an example that folds
together many of the points we describe here. It is
structured using the Rome data model [16]. The example

represents the format that would be seen by one of our
design tools, rather than the form seen by people
specifying this information, for which user-oriented
GUIs are more appropriate. We encourage the reader to
follow along as these concepts are introduced.

3.1 Specifying user requirements

In this section, we discuss the requirements for
which the users must provide input, including data and
stream attributes.

3.1.1 Data: content
Data is the information content that is stored. At the

storage system level, a data item is relatively large – a
logical volume, a complete file system, or a database
table. Higher-level software, such as a file system or
database, maps smaller data objects such as files or
records into these larger-scale data objects. We assume
the existence of a primary copy of a data item, possibly
with completely or partially redundant secondary copies.

Reliability is the most important data property: how
much data loss is tolerable? Although users are likely to
answer “none,” they must decide how much they are
willing to pay to bound the amount or rate of data loss.
For a large system, it makes sense to think of a “mean
data loss rate” that is achievable for a given price.

Different types of data may have different reliability
needs. For instance, it might be more cost-effective to
allow up to 30% of the data for an Internet search
application to be lost than to pay for its protection, as this
will only impact the quality of answers it can provide,
without impacting its ability to provide an answer [6].
Similarly, a database index can be rebuilt from the raw
data, so it can be protected with less expensive techniques
than the data it indexes, as queries can be posed against
the main table(s) temporarily.

Thus, we believe that the appropriate data-related
dependability properties are as follows:

• capacity: the size of the content, in bytes.

• dataLossRate : the allowed rate at which a particular
size of data loss can occur, specified as a <bytes, time
interval> tuple. When the size is one byte, the interval
is the inverse of the traditional “mean time to data
loss” metric. Some failure modes and store designs
are such that only a portion of the data may be lost
(e.g., at most a day’s worth of updates). This
measure allows different designs to exhibit different
properties, even if their traditional “reliability”
values are the same.

• dependsOn: data-level recovery or integrity
dependencies. For instance, the indices for an order-
entry database depend on the underlying tables,
implying that the tables should be recovered first
after a failure. Additionally, applications may share
data, making the description of these dependencies a
DAG rather than a tree.

4

3.1.2 Retrieval points
Keeping read-only copies of a data item’s state is a

classic technique in data protection. These copies have
been called versions, generations, snapshots, checkpoints
or backups; we prefer the term retrieval points to separate
the intent from the technique. A retrieval point permits
“time-travel” in the storage system by capturing the state
of a data item at some moment, with the expectation that
this state can be accessed in the future. Retrieval points
can be used to satisfy many needs, including protection
against device failure, protection against user error or
malicious actions [12, 14], protection against software
errors or data corruption, legal requirements (e.g.,
audits), preserving a particular data state or a related set
of data item states (e.g., archiving all the designs for a
particular aircraft engine), and wanting to look at prior
versions “in case they still have value” (e.g., old RCS
versions or the file system structure used last year).

Retrieval point properties depend on the purpose of
the retrieval point. Some retrieval points are single-shot
archives (e.g., the design for an airplane engine). Such an
archive may have required retention times, and
accessibility and reliability properties. Some retrieval
points are better thought of as a series of related point-in-
time snapshots, generated by some automatic technique.
A series may be better described by the number of
retrieval points it should contain and a bound on the
intervals between them, which implicitly specifies how
many recent updates the user is willing to lose.

The useful lifetime of a retrieval point depends on
the time to discover the need to recover data. For
example, a person may take a few seconds to realize that
he or she made a mistake, or a file system consistency
checker may only be run once an hour. This time-to-
detect acts as a natural lower bound on how long an
associated retrieval point should be kept. Often, time-to-
detect is quite short: research indicates that humans
typically catch about 70% of their own errors, often
within a few minutes of making them [11].

We describe retrieval point properties as follows:

• capacity and dataLossRate : defined as for a data
item. It is useful to distinguish between the
dataLossRate for the retrieval point and that of the
parent data item, because people may value these
versions differently.

• retention and expiration times: how long the content
must be retained, and when it must be expunged. For
example, retain the data forever and never expunge
it, or keep it for seven years and then discard it
immediately. The expiration date must be no earlier
than the retention date. Associating these times with
a read-only retrieval point avoids the difficulties of
deciding what to do for data items that are being
updated, where the starting point of the
retention/expiration period is often unclear: is it the
creation time, the update time, or the last access
time?

• count: the number of retrieval points of this type to
retain. This attribute can implicitly specify how long

retrieval points should be kept. Note that the user
cannot specify both a count and a retention time.

• interval : the interval between retrieval points. This
attribute is a measure of the amount of data loss that
can be tolerated on a failure or mistake. It can be
specified as a time (e.g., 30 minutes), an amount of
data (4MB), or a count of updates (1 million writes).

A data item can have a series of retrieval points, each
with associated resiliency and lifetime properties. For
example, specifying the three retrieval point series
<interval=60 seconds, count=60, dataLossRate=1 B / 5
minutes>, <4 hours, 2, 1 B / 12 hours>, <3 months, 1 B /
50 years> might cause the system to take a low-resiliency
snapshot every minute, a more resilient one every four
hours, and a nearly indestructible one once every quarter.

3.1.3 Streams: access patterns
Streams describe the access patterns to an associated

data item. Performance requirements may be as simple as
request rates and request sizes, or rich enough to include
other quantities, such as spatial and temporal locality,
phasing behavior, correlations between accesses to
different parts of the storage system, and response time
goals. (A more detailed description can be found in [16].)

We specify data accessibility using stream-based
performability requirements, which indicate how often
certain performance levels should be achieved. In
particular, we describe both the baseline performance
requirements under normal operation and the
performance requirements needed during outages, which
are periods of degraded operation. The allowed
frequency and duration of outages can also be specified.

This approach is in contrast to the traditional, rather
simplistic, “number of nines” availability metric, which
implicitly supports only “all” or “none” as its two
performance levels. In our scheme, the traditional “no
availability” case is an outage with zero access
performance. In addition, several intermediate outage
levels can be described, each with its own performance
specification. For example, if a system can tolerate
operating at 50% of normal performance for a while, then
this time can be used to bound the recovery time for a
mirrored disk failure.

We describe outages using the following attributes:

• outage duration: the time duration of the longest
tolerable outage. Note that this quantity implicitly
includes the time to detect, diagnose, repair and
recover from the failure, as described in Section 3.2.
As a result, the overall recovery time must be strictly
less than or equal to the outage duration.

• outage frequency: the maximum number of separate
outages that are permitted (or measured) during a
user-specified period (e.g., a year).

• outage fraction: the fraction of the total time
(averaged over the user-defined period) that can be
outages.

A common approach to handling the case where data
has to be retrieved from a secondary copy is the use of a

5

“time to first byte” specification, to cover the recovery
time. We believe that this case is better handled by
specifying the allowed delay as an outage, which can also
be used to put bounds on the number and frequency of
such recoveries.

A final category of stream characteristics governs
the amount of recently-written data that may be lost on a
failure (e.g., from a file system write buffer in volatile
memory). This amount is related to the update rate and
the fraction of the data that is changing, so we believe
these notions to be most appropriately categorized as
stream (rather than data) characteristics:

• recent-write data loss: the amount of the most-
recently-written data that can be lost on a failure.
This parameter may be specified in terms of time
(e.g., no more than the last 30 seconds) or in terms of
volume (e.g., no more than 1MB).

• recent-write loss frequency: an occurrence
frequency can be associated with this event to bound
how often it may happen.

Note that individual retrieval points probably have
different stream characteristics from each other and from
the parent data item. Applications may only update the
data item (e.g., the most recent copy), while they may
read either the most recent copy or one of the retrieval
points. For example, a retrieval point implemented as a
file system snapshot may be read by the backup system to
copy the data to archival media. Alternately, a retrieval
point may be read to restore data upon software or user
error. A retrieval point may also be directly accessed by
an application. For example, a data mining algorithm
may be run on a retrieval point for data from the OLTP
database. The characteristics of such streams will have a
large impact on what techniques can be used to provide
the retrieval point (e.g., rapid recovery from user error
and tape backup are not a good match).

3.1.4 Common attributes
Several attributes cut across the data and stream

attribute categories, including:

• application: the business functionality that
corresponds to a particular data item or stream (e.g.,
order-entry OLTP database or email server). The
application is used to group related data items and
streams.

• dependsOn: application-level recovery
dependencies or ordering requirements. For
instance, after a site failure, the OS data should be
recovered before any of the application data.

• utility: Trade-offs can be specified using utility
functions [8]: utility is positive when the system is
delivering value (e.g., performing at or above its
goal), and negative (e.g., a penalty) when the system
under-achieves the goals. Such a utility function
would allow us to prioritize applications differently.
For example, getting 100 requests/sec for the order
entry data may be more important than getting any
requests to email data, but that once email achieves

50 requests/sec, then increasing the order-entry
capability would be valuable.

The reader can think of a utility function being
provided for any of the above metric values. It is
important that there is a “common currency” for
utility; ultimately, we believe that this should be the
same as the currency used to pay for the system. We
are currently considering how best to specify
generalized utility functions.

3.2 Specifying storage system failures

Failures can cause a system to lose data or to lose
accessibility to data. They may occur at many points in
the system, including the hardware, the software, and the
humans interacting with the system. In fact, the literature
suggests that humans are now responsible for the largest
fraction of failures in many systems [11].

Our model of failure behavior [17] is illustrated in
Figure 2. A failure occurs; some (hopefully short) time
later this is detected and diagnosed, and the system enters
degraded mode operation. If the technique(s) mask the
failure, operation will continue at a (potentially reduced)
non-zero performance level. After the failure is repaired,
recovery is then initiated, and the system returns to
normal operation (which may or may not be identical to
the initial state, due to load balancing issues, etc.)

We characterize failures by the likelihood of their
occurrence and the severity of their effects:

• failure frequency : what is the likely rate of failures of
this type (expressed as an annual failure rate per
entity)?

• failure scope : what part of the system is affected by
the failure? The scope includes how many objects
are affected at a time (e.g., all disks of a particular
type or all files in a directory). The design system
itself will calculate the effects of cascading,
dependent failures.

• failure correlations: how often are failures not
independent? For example, multiple disks may fail at
the same time if the problem is excessive
temperature.

• failure manifestation: how does the failure manifest
itself? Possibilities include fail-stop (our focus for
now), fail-stutter [4] or Byzantine failures.

• early warning: how much warning time is provided

Normal
mode

Failure!

Recovery

Elapsed time

 Detection Repair

Recovery
mode

Degraded
mode

Normal
mode

Figure 2: failure behavior modes and
performance.

P
er

fo
rm

an
ce

6

before the failure? For true failures, this amount is
likely zero; however, planned maintenance
operations may provide as much as weeks of
warning.

• failure duration: how long is the failure expected to
last? For planned maintenance, we may be able to
estimate the duration of the outage.

• failure fix unit: what’s the minimum field
replaceable unit (FRU) to fix this failure? For
example, if a disk fails, it is more cost-effective to
replace the defective disk than to replace the entire
array. Alternately, if a SCSI bus fails, an entire disk
array enclosure may need to be replaced. The failure
fix unit will ultimately determine how much data
must be recovered.

Examples of hardware-oriented failure scopes
include:

– components (e.g., sector, disk, controller, cache
memory, link, bus, UPS, fan, cable, plug)

– subsystems (e.g., array, host, switch, LAN, air
conditioning unit, building power transformer)

– racks (e.g., a set of subsystems)
– rooms (e.g., a set of racks)
– buildings (e.g., a set of rooms)
– sites (e.g., a set of buildings)
– areas (e.g., a set of sites, city, earthquake zone)

Software- and user-oriented failures have similar
kinds of scopes: a file, all files owned by a user, a file
system, a logical volume, an operating system partition, a
cluster file system, etc. Similar scopes exist for a
database: record, table, table-space, and the entire
database.

An alternate approach to failure scopes and
correlations is to specify dependence relationships
between components, which can be used to construct
hierarchical fault trees [13]. We are currently
investigating which alternatives are most appropriate.

We assume that initial failure estimates are provided
to the storage design system by the provider of the
hardware or software components. This information may
be augmented by monitoring the operation of a deployed
system.

3.3 Specifying data protection techniques

Stores are containers in which data items reside. The
family of containers used to store data is organized as a
hierarchy: host logical volumes reside on one or more
disk array logical units, which are comprised of one or
more disks, etc. Stores may employ different data
protection techniques, which use redundant data
representations to ensure that data is not damaged if
something fails.

Different techniques provide a wide range of
performance, failure tolerance and cost properties. They
differ in their:

• baseline performance under normal operation

• degraded- and recovery-mode (i.e., outage)

performance

• ability to tolerate different failure properties

• repair and recovery costs (e.g., time, money)

• cost of implementation (e.g., space, time, money)

Selecting the best data protection techniques to
satisfy user requirements requires understanding these
properties for each candidate technique. We assume this
information will be supplied by the provider of the data
protection technique, estimated using models, or
calculated by the storage design system, as described
below.

To capture the performance categories, the design
system needs one or more performance models of the
technique’s behavior – typically, one for each mode in
which it can operate (normal, degraded, recovery).
Several techniques have been described in the literature
for estimating storage device performance under normal
mode quickly and efficiently enough to be used in a
storage design tool (e.g., [15]).

The design system needs to determine the
probability of each performance mode for each
technique. This requires knowledge of:

• failure tolerance: which failure scopes can the
technique handle? We believe that this is best
thought of as the set of performance modes entered
for each associated failure scope.

• data loss: how much data is lost for a failure scope?
Zero means that the technique masks or tolerates the
failure.

• repair time: how long does repair take, before
recovery can commence? This time includes
physical repair, and can be short if the system
includes hot spares for the failed component.

• data to be reconstructed: this value will be computed
from the failure fix unit for a particular failure scope.
For instance, if an entire disk enclosure must be
replaced, all disk array logical units that use disks in
that enclosure must reconstruct data.

• recovery time: this value will be calculated as a
function of the desired performance levels and
tolerable outages. For example, if recovery is
achieved by copying data, then the speed of recovery
can be varied to control the amount of disruption to
the foreground load. Working backwards from the
user’s maximum allowed outage duration and
frequency allows us to calculate the recovery traffic
that will achieve recovery within the tolerable outage
bounds. This traffic will have the least effect on the
foreground load. Whether the resulting foreground
performance is adequate is then a function of the
workload requirements. If not, then the design
system must choose some other technique to provide
adequate protection and performance.

We are still in the early stages of mapping this space,
and expect to expand this specification framework as we
gain more experience with how the specifications,
performance models and design tools interact.

7

4 Related work

Data dependability is a vast space. Much of the
existing work in the systems community is on devising
new data protection techniques, rather than on providing
guidance on how to choose between them. CMU’s
PASIS project is trying to understand trade-offs in the
design of survivable storage systems [18]. Their focus is
primarily on threshold coding schemes and cryptographic
techniques to increase data dependability (including
availability, reliability and security) in the wide area.

Additional work in the systems literature deals with
evaluating the performability of a system. Wilkes and
Stata [17] propose a method for describing
performability using variations in quality of service
under normal and degraded modes of operation. Brown
and Patterson [7] describe how to measure the
availability of RAID systems using a similar
performability framework.

In the performance space, we have successfully used
the approach of declarative goal specification [16] to
automate the mapping of performance and capacity
requirements onto storage designs [1, 2, 3].

Although the system administration community
chooses between different data protection techniques
regularly, there is little published literature on the topic.
The dependable systems community has developed a
vocabulary for describing dependability and failure
behavior [5] and techniques for modeling various aspects
of dependability [9] [13]. We are in the process of
understanding the considerable body of literature from
this community.

5 Conclusions

Increasing data dependability is an important
problem, whose value will continue to increase as service
dependability becomes more important. The proliferation
of techniques, the complexity of interactions and the
richness of demands are making purely manual methods
cumbersome. We believe that automating the selection of
techniques is both necessary and promising, and that the
correct goal is a broadly-scoped automated design tool
for data protection. This paper has outlined our approach,
and described the data model we use to describe user
requirements, failure characteristics and data protection
technique behaviors.

We see a number of areas of future work. First, how
do we intuitively ask users what they want? Second, how
do we build a suite of design tools that automates the
selection of data protection techniques? Finally, we
challenge developers of new techniques to describe their
behavior under different operational modes.

6 Acknowledgements

The authors thank Eric Anderson, Christos
Karamanolis, Mahesh Kallahalla, Ram Swaminathan,
and Jay Wylie for their valuable insights and comments
on earlier versions of this paper.

7 References

[1] G. Alvarez, et al. “Minerva: an automated resource
provisioning tool for large-scale storage systems,” ACM
Transactions on Computer Systems , 19(4):483-518, November
2001.

[2] E. Anderson, M. Hobbs, K. Keeton, S. Spence, M. Uysal,
and A. Veitch. “Hippodrome: running circles around storage
administration,” Proc. of the USENIX Conference on File and
Storage Technologies (FAST) , January 2002, pp. 175 - 188.

[3] E. Anderson, M. Kallahalla, S. Spence, R. Swaminathan,
and Q. Wang. “Ergastulum: an approach to solving the
workload and device configuration problem,” HP Laboratories
SSP technical memo HPL-SSP-2001-05, May 2002.
[4] R. Arpaci-Dusseau and A. Arpaci-Dusseau. “Fail-stutter
fault tolerance,” Proc. of the Eighth Workshop on Hot Topics in
Operating Systems (HotOS-VIII), May 2001, pp. 33 - 38.

[5] A. Avizienis, J.-C. Laprie and B. Randell. “Fundamental
concepts of dependability,” Proc. of the 3rd Information
Survivability Workshop, October 2000, pp. 7 - 12.

[6] E. Brewer. “Lessons from giant-scale services,” IEEE
Internet Computing, 5(4):46-55, July 2001.

[7] A. Brown and D. Patterson. “Towards availability
benchmarks: a case study of software RAID systems,” Proc. of
the 2000 USENIX Annual Technical Conference , June 2000, pp.
263 - 276.

[8] G. Candea and A. Fox. “A utility-centered approach to
dependable service design,” Proc. of the 10th ACM-SIGOPS
European Workshop, September 2002.

[9] B. Haverkort, R. Marie, G. Rubino and K. Trivedi, eds.
Performability modeling: techniques and tools , John Wiley and
Sons, Chichester, England, May 2001.
[10] K. Keeton and E. Anderson. “A backup appliance
composed of high-capacity disk drives,” Proc. of HotOS-VIII,
May 2001, p. 171.

[11] D. Patterson. “A new focus for a new century: availability
and maintainability >> performance,” Keynote speech at
USENIX FAST, January 2002. Available from
http://www.usenix.org/publications/library/proceedings/fa
st02/.

[12] D. Santry, et al. “Deciding when to forget in the Elephant
file system,” Proc. of the 17th ACM Symposium on Operating
Systems Principles (SOSP ‘99), December 1999, pp. 110 - 123.

[13] D. Sieworek and R. Swartz. Reliable computer systems:
design and evaluation, A. K. Peters, Third Edition, 1998.

[14] J. Strunk. et al. “Self-securing storage: protecting data in
compromised systems,” Proc. of Operating Systems Design and
Implementation (OSDI), San Diego, CA, October 2000, pp.
165-180.

[15] M. Uysal, G. Alvarez and A. Merchant. “A modular,
analytical throughput model for modern disk arrays,” Proc. of
the 9th Intl. Symp. on Modeling, Analysis and Simulation on
Computer and Telecommunications Systems (MASCOTS),
August 2001, pp. 183 - 192.

[16] J. Wilkes. “Traveling to Rome: QoS specifications for
automated storage system management,” Proc. of the Intl.
Workshop on Quality of Service (IWQoS) , June 2001, pp. 75 -
91.
[17] J. Wilkes and R. Stata. “Specifying data availabilty in
multi-device file systems,” Proc. of the 4th ACM-SIGOPS
European Workshop, September 1990; published as Operating
Systems Review 25(1):56-59, January 1991.

8

[18] J. Wylie, et al. “Selecting the right data distribution
scheme for a survivable storage system,” Technical report
CMU-CS-01-120, Carnegie Mellon University, May 2001.

8 Appendix: example

OS

payrollDB application utility=3

payroll_table data
capacity=100GB
dataLossRate=1 byte / 50 years
retrievalPoints:

hourly: interval=60min, count =24
daily: interval=24 hours,

retainUntil=createTime+8 days
quarterly: interval=3 months, count=inf,

dataLossRate=1 B / 50 years

DBMS

payroll_index data
capacity=10GB
dataLossRate=10 GB / 1 year
retrievalPoints:

hourly: interval=60min, count =24

payroll_table stream
normal performance:

interarrivalTime (IAT)=0.01 s (100 req/s)
requestSize=4 KB

outages:
degraded: maxDuration=1 hr,
maxFraction=15 hrs/yr, IAT=0.02 s (50%)
broken : maxDuration=5 min,
maxFraction=5 min/yr, IAT=inf (0%)

recentLoss:
maxLoss=0 B

retrievalPoint performability:
hourly: maxRespTime=1 s; outages:...
daily: maxRespTime=15 min; outages:...
quarterly: maxRespTime=3 days; outages

payroll_index stream
normal performance:

interarrivalTime (IAT)=0.005 s (200 req/s)
requestSize=4 KB

outages:
degraded: maxDuration=1 hr,
maxFraction=15 hrs/yr, IAT=0.01 s (50%)
broken : maxDuration=15 min,
maxFraction=15 min/yr, IAT=inf (0%)

recentLoss:
maxLoss=30 sec
maxFrequency=1 time/year

retrievalPoint performability:
hourly: maxRespTime=1 s; outages:...

accessesaccesses

depends
on

depends
on

store 1 technique=2-disk RAID10 disk array logical unit
capacity=180GB boundTo=array4.lu3 (not shown)
normal performance=260 req/s (computed by perf. models for workload)
singleDisk failure behavior:

tolerated=yes; dataLoss=0 B; repairTime=30 sec (assume hot spare);
data to be reconstructed=180 GB; degraded mode perf=130 req/s;
recovery time and perf (calculated from requirements)

replaceSiteTransformer failure behavior:
tolerated=no; dataLoss=0 B; repairTime=8 hrs; data to be reconstructed=0 B;

degraded mode perf=0 req/s

depends
on

singleDisk failure
scope=1 disk
frequency=0.02 events/year
fixUnit=1 disk
earlyWarning=0 min

replaceSiteTransformer failure
scope=1 site power transformer
frequency=2 events/year
duration=8 hours (planned maintenance time)
fixUnit=1 transformer
earlyWarning=3 weeks

store 2 technique=2-disk RAID10 disk array logical unit
capacity=180GB boundTo=array4.lu4 (not shown)
. . . (same as above)

stored
on

stored
on

Figure 3: a (simplified) sample data dependability specification. A payroll database contains both a table
and an index. In normal mode, the table gets 100 requests/sec; in “degraded” mode, it can operate at half
that rate for an hour at a time; and it can be “broken” no more than 5 minutes a year (“five nines availability”).
The index is accessed at twice the rate. Three retrieval points are defined for the table, with different time
intervals and retention periods. The data is stored on RAID10 disk array logical units, whose performance
under normal mode and various failure conditions is provided by performance models. We note that these
stores tolerate the single disk failure, but not the site transformer replacement.

