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Abstract

Disk arrays have a myriad of configuration parameters
that interact in counter-intuitive ways, and those interac-
tions can have significant impacts on cost, performance,
and reliability. Even after values for these parameters
have been chosen, there are exponentially-many ways to
map data onto the disk arrays’ logical units. Meanwhile,
the importance of correct choices is increasing: stor-
age systems represent an growing fraction of total sys-
tem cost, they need to respond more rapidly to changing
needs, and there is less and less tolerance for mistakes.
We believe that automatic design and configuration of
storage systems is the only viable solution to these is-
sues. To that end, we present a comparative study of a
range of techniques for programmatically choosing the
RAID levels to use in a disk array.

Our simplest approaches are modeled on existing, man-
ual rules of thumb: they “tag” data with aRAID level be-
fore determining the configuration of the array to which
it is assigned. Our best approach simultaneously deter-
mines theRAID levels for the data, the array configura-
tion, and the layout of data on that array. It operates as an
optimization process with the twin goals of minimizing
array cost while ensuring that storage workload perfor-
mance requirements will be met. This approach produces
robust solutions with an average cost/performance 14–
17% better than the best results for the tagging schemes,
and up to 150–200% better than their worst solutions.

We believe that this is the first presentation and system-
atic analysis of a variety of novel, fully-automaticRAID-
level selection techniques.

1 Introduction

Disk arrays are an integral part of high-performance stor-
age systems, and their importance and scale are growing
as continuous access to information becomes critical to
the day-to-day operation of modern business.

Before a disk array can be used to store data, values
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Figure 1: The decision flow in makingRAID level selections,
and mapping stores to devices. If a tagger is present, it irre-
vocably assigns aRAID level to each store before the solver is
run; otherwise, the solver assignsRAID levels as it makes data
layout decisions. Some variants of the solver allow revisiting
this decision in a final reassignment pass; others do not.

for many configuration parameters must be specified:
achieving the right balance between cost, availability,
and application performance needs depends on many
correct decisions. Unfortunately, the tradeoffs between
the choices are surprisingly complicated. We focus here
on just one of these choices: whichRAID level, or data-
redundancy scheme, to use.

The two most common redundancy schemes are
RAID 1/0 (striped mirroring), where every byte of data is
kept on two separate disk drives, and striped for greater
I/O parallelism, andRAID 5 [20], where a single parity
block protects the data in a stripe from disk drive failures.
RAID 1/0 provides greater read performance and failure
tolerance—but requires almost twice as many disk drives
to do so. Much prior work has studied the properties of
differentRAID levels (e.g., [2, 6, 20, 11]).



Disk arrays organize their data storage intoLogical
Units, or LUs, which appear as linear block spaces to
their clients. A small disk array, with a few disks, might
support up to 8LUs; a large one, with hundreds of disk
drives, can support thousands. EachLU typically has a
given RAID level—a redundancy mapping onto one or
more underlying physical disk drives. This decision is
made atLU-creation time, and is typically irrevocable:
once theLUhas been formatted, changing itsRAID level
requires copying all the data onto a newLU.

Following previous work [7, 25], we describe the work-
loads to be run on a storage system as sets ofstoresand
streams. A store is a logically contiguous array of bytes,
such as a file system or a database table, with a size typ-
ically measured in gigabytes; a stream is a set of access
patterns on a store, described by attributes such as re-
quest rate, request size, inter-stream phasing informa-
tion, and sequentiality. ARAID level must be decided
for each store in the workload; if there arek RAID levels
to choose from andm stores in the workload, then there
arekm feasible configurations. Sincek � 2 andm is
usually over a hundred, this search space is too large to
explore exhaustively by hand.

Host-based logical volume managers (LVMs) complicate
matters by allowing multiple stores to be mapped onto
a singleLU, effectively blending multiple workloads to-
gether.

There is no single best choice ofRAID level: the right
choice for a given store is a function of the access pat-
terns on the store (e.g., reads versus writes; small versus
large; sequential versus random), the disk array’s char-
acteristics (including optimizations such as write buffer
merging [23], segmented caching [26], and parity log-
ging [21]), and the effects of other workloads and stores
assigned to the same array [18, 27].

In the presence of these complexities, system adminis-
trators are faced with the tasks of (1) selecting the type
and number of arrays; (2) selecting the size andRAID

level for eachLU in each disk array; and (3) placing
stores on the resultingLUs. The administrators’ goals
are operational in nature, such as minimum cost, or max-
imum reliability for a given cost—while satisfying the
performance requirements of client applications. This is
clearly a very difficult task, so manual approaches ap-
ply rules of thumb and gross over-provisioning to sim-
plify the problem (e.g., “stripe each database table over
as manyRAID 1/0 LUs as you can”). Unfortunately, this
paper shows that the resulting configurations can cost as
much as a factor of two to three more than necessary.
This matters when the cost of a large storage system can
easily be measured in millions of dollars and represents
more than half the total system hardware cost. Perhaps

even more important is the uncertainty that surrounds a
manually-designed system: (how well) will it meet its
performance and availability goals?

We believe that automatic methods for storage system
design [1, 5, 7, 4] can overcome these limitations, be-
cause they can consider a wider range of workload in-
teractions, and explore a great deal more of the search
space than any manual method. To do so, these auto-
matic methods need to be able to makeRAID-level se-
lection decisions, so the question arises: what is the best
way to do this selection? This paper introduces a variety
of approaches for answering this question.

The rest of the paper is organized as follows. In Section 2
we describe the architecture of ourRAID level selection
infrastructure. We introduce the schemes that operate
on a per-store basis in Section 3, and in Section 4 we
present a family of methods that simultaneously account
for prior data placement andRAID level selection deci-
sions. In Section 5, we compare all the schemes by do-
ing experiments with synthetic and realistic workloads.
We conclude in Sections 6 and 7 with a review of related
work, and a summary of our results and possible further
research.

2 Automatic selection of RAID levels

Our approach to automating storage system design relies
on asolver: a tool that takes as input (1) a workload de-
scription and (2) information about the target disk array
types and their configuration choices. The solver’s out-
put is a design for a storage system capable of supporting
that workload.

In the results reported in this paper, we use our third-
generation solver,Ergastulum[5] (prior solver gener-
ations were called Forum [7] and Minerva [1]). Our
solvers are constraint-based optimization systems that
use analytical and interpolation-basedperformance mod-
els[3, 7, 18, 23] to determine whether performance con-
straints are being met by a tentative design. Although
such models are less accurate than trace-driven simula-
tions, they are much faster, so the solver can rapidly eval-
uate many potential configurations.

As illustrated in Figure 1, the solver designs configura-
tions for one or more disk arrays that will satisfy a given
workload. This includes determining the array type and
count, selecting the configuration for eachLU in each ar-
ray, and assigning the stores onto theLUs. In general,
solvers rely on heuristics to search for the solution that
minimizes some user-specified goal or objective. All ex-
periments in this paper have been run with the objective
of minimizing the hardware cost of the system being de-
signed, while satisfying the workload’s performance re-



quirements.

During the optionaltaggingphase, the solver examines
each store, and tags it with aRAID level based on the
attributes of the store and associated streams.

During the initial assignmentphase, Ergastulum ex-
plores the array design search space by first randomiz-
ing the order of the stores, and then running a best-fit
search algorithm [10, 15, 16] that assigns one store at a
time into a tentative array design. Given two possible as-
signments of a store onto differentLUs, the solver uses
an externally-selectedgoal functionto choose the “best”
assignment. While searching for the best placement of
a store, the solver will try to assign it onto the existing
LUs, to purchase additionalLUs on existing arrays, and
to purchase additional arrays. A goal function that favors
lower-cost solutions will bias the solver towards using
existingLUs where it can.

At each assignment, the solver uses its performance
models to performconstraint checks. These checks en-
sure that the result is a feasible, valid solution that can ac-
commodate the capacity and performance requirements
of the workload.

Thereassignmentphase of the solver algorithm attempts
to improve on the solution found in the initial phase. The
solver randomly selects a completeLU from the existing
set, removes all the stores from it, andreassignsthem,
just as in the first phase. It repeats this process until ev-
ery singleLUs has been reassigned a few times (a con-
figurable parameter that we set to 3). The reassignment
phase is designed to help the solver avoid local minima
in the optimization search space. This phase produces a
near-optimal assignment of stores toLUs. For more de-
tails on the optimality of the assignments and on the op-
eration of the solver, we refer the interested reader to [5].

2.1 Approaches to RAID level selection

We explore two main approaches to selecting aRAID

level:

1. Taggingapproaches: These approaches perform a
pre-processing step to tag stores withRAID levels
before the solver is invoked. Once tagged with a
RAID level, a store cannot change its tag, and it must
be assigned to anLU of that type. Tagging decisions
consider each store and its streams in isolation. We
consider two types of taggers:rule-based, which
examine the size and type of I/Os; andmodel-based,
which use performance models to make their deci-
sions. The former tend to have manyad hocpa-
rameter settings; the latter have fewer, but also need
performance-related data for a particular disk array

type. In some cases we use the same performance
models as we later apply in the solver.

2. Solver-based, or integrated, approaches: These
omit the tagging step, and defer the choice ofRAID

level until data-placement decisions are made by the
solver. This allows theRAID level decision to take
into account interactions with the other stores and
streams that have already been assigned.

We explored two variants of this approach: apar-
tially adaptiveone, in which theRAID level of anLU

is chosen when the first store is assigned to it, and
cannot subsequently be changed; and afully adap-
tive variant, in which any assignment pass can re-
visit the RAID level decision for anLU at any time
during its best-fit search. In both cases, the reassign-
ment pass can still change the bindings of stores to
LUs, and even move a store to anLU of a different
RAID level.

Neither variant requires anyad hocconstants, and
both can dynamically selectRAID levels. The fully
adaptive approach has greater solver complexity
and longer running times, but results in an explo-
ration of a larger fraction of the array design search
space.

Table 1 contrasts the four families ofRAID level selection
methods we studied.

We now turn to a detailed description of these ap-
proaches.

3 Tagging schemes

Taggingis the process of determining, for each store in
isolation, the appropriateRAID level for it. The solver
must later assign that store to anLU with the required
RAID level. The tagger operates exactly once on each
store in the input workload description, and its decisions
are final. We followed this approach in previous work
[1] because the decomposition into two separate stages
is natural, is easy to understand, and limits the search
space that must be explored when designing the rest of
the storage system.

We explore two types of taggers: one type based on rules
of thumb and the other based on performance models.

3.1 Rule-based taggers

These taggers make their decisions using rules based on
the size and type of I/Os performed by the streams. This
is the approach implied by the originalRAID paper [20],
which stated, for example, thatRAID 5 is bad for “small”



Approach Goal functions Solver Summary

Rule-based tagging no change simple many constants, variable results
Model-based tagging no change simple fewer constants, variable results

Partially-adaptive solver special for initial assignment simple good results, limited flexibility
Fully-adaptive solver no change complex good results, flexible but slower

Table 1: The four families ofRAID-level selection methods studied in this paper. The two tagging families use either rule-based
or model-based taggers. The model-based taggers use parameters appropriate for the array being configured. The fully adaptive
family uses a substantially more complex solver than the other families. TheGoal functionscolumn indicates whether the same
goal functions are used in both solver phases: initial assignment and reassignment. TheSummarycolumn provides an evaluation
of their relative strengths and weaknesses.

writes, but good for “big” sequential writes. This ap-
proach leads to a large collection of device-specific con-
stants, such as the number of seeks per second a de-
vice can perform, and device-specific thresholds, such as
where exactly to draw the line between a “mostly-read”
and a “mostly-write” workload. These thresholds could,
in principle, be workload-independent, but in practice,
we found it necessary to tune them experimentally to our
test workloads and arrays, which means that there is no
guarantee they will work as well on any other problem.

The rules we explored were the following. The first three
taggers help provide a measure of the cost of thelaissez-
faire approaches. The remaining ones attempt to specify
concrete values for the rules of thumb proposed in [20].

1. random:pick aRAID level at random.

2. allR10: tag all storesRAID 1/0.

3. allR5: tag all storesRAID 5.

4. R5BigWrite: tag a storeRAID 1/0 unless it has
“mostly” writes (the threshold we used was at least
2/3 of the I/Os), and the writes are also “big”
(greater than 200KB, after merging sequential I/O
requests together).

5. R5BigWriteOnly:tag a storeRAID 1/0 unless it has
“big” writes, as defined above.

6. R10SmallWrite: tag a storeRAID 5 unless it has
“mostly” writes and the writes are “small” (i.e., not
“big”).

7. R10SmallWriteAggressive:as R10SmallWrite, but
with the threshold for number of writes set to 1/10
of the I/Os rather than 2/3.

In practice, we found these rules needed to be aug-
mented with an additional rule to determine if a store was
capacity-bound(i.e., if space, rather than performance,
was likely to be the bottleneck resource). A capacity-
bound store was always tagged asRAID 5. This rule

required additional constants, with units of bytes-per-
second/GB and seeks-per-second/GB; these values had to
be computed independently for each array. (Also, it is
unclear what to do if an array can support different disk
types with different capacity/performance ratios.)

We also evaluated each of these taggers without the
capacity-bound rule. These variations are shown in the
graphs in Section 5 by appendingSimpleto each of the
tagger names.

3.2 Model-based taggers

The second type of tagging methods we studied used
array-type-specific performance models to estimate the
effect of assigning a store to anLU, and made a selection
based on that result.

The first set of this type use simple performance mod-
els that predict the number of back-end I/Os per sec-
ond (IOPS) that will result from the store being tagged
at each availableRAID level, and then pick theRAID

level that minimizes that number. This removes somead
hoc thresholds such as the size of a “big” write, but still
requires array-specific constants to compute the IOPS
estimates. These taggers still need the addition of the
capacity-bound rule to get decent results. The IOPS-
based taggers we study are:

8. IOPS: tag a storeRAID 1/0 if the estimated IOPS
would be smaller on aRAID 1/0 than on aRAID 5
LU. Otherwise tag it asRAID 5.

9. IOPS-disk:asIOPSexcept the IOPS estimates are
divided by the number of disks in theLU, resulting
in a per-disk IOPS measure, rather than a per-LU

measure. The intent is to reflect the potentially dif-
ferent number of disks inRAID 1/0 andRAID 5 LUs.

10. IOPS-capacity:asIOPSexcept the IOPS estimates
are multiplied by the ratio of raw (unprotected) ca-
pacity divided by effective capacity. This measure
factors in the extra capacity cost associated with
RAID 1/0.



The second set of model-based taggers use the same per-
formance models that needed to be constructed and cal-
ibrated for the solver anyway, and does not depend on
any ad hocconstants. These taggers use the models to
compute, for each availableRAID level, the percentage
changes in theLU’s utilization and capacity that will re-
sult from choosing that level, under the simplifying as-
sumption that theLU is dedicated solely to the store being
tagged. We then form a 2-dimensional vector from these
two results, and then pick theRAID level that minimizes:

11. PerfVectLength:the length (L2 norm) of the vector;

12. PerfVectAvg:the average magnitude (L1 norm) of
the components;

13. PerfVectMax: the maximum component (L1
norm);

14. UtilizationOnly: just the utilization component, ig-
noring capacity.

4 Solver-based schemes

When we first tried using the solver to make allRAID-
level decisions, we discovered it worked poorly for two
related reasons:

1. The solver’s goal functions were cost-based, and us-
ing an existingLU is always cheaper than allocating
a new one.

2. The solver chooses aRAID level for a newLU

when it places the first store onto it – and a 2-
disk RAID 1/0 LU is always cheaper than a 3- or
more-disk RAID 5 LU. As a result, the solver
would choose aRAID 1/0 LU, fill it up, and then
repeat this process, even though the resulting sys-
tem would cost more because of the additional disk
space needed for redundancy inRAID 1/0. (Our
tests on the FC-60 array (described in Section 5.2)
did not have this discrepancy because we arranged
for theRAID 1/0 andRAID 5 LUs to contain six disks
each, to take best advantage of the array’s internal
bus structure.)

We explored two options for addressing these difficulties.
First, we used a number of different initial goal functions
that ignored cost, in the hope that this would give the
reassignment phase a better starting point. Second, we
extended the solver to allow it to change theRAID level
of anLU even after stores had been assigned to it.

We refer to the first option aspartially-adaptive, because
it can change theRAID level associated with an indi-
vidual store—but it still fixes anLU’s RAID level when

the first store is assigned to it. Adding another goal
function to the solver proved easy, so we tried several
in a search for one that worked well. We refer to the
second option asfully-adaptivebecause theRAID level
of the store and theLUs can be changed at almost any
time. It is more flexible than the partially-adaptive one,
but required more extensive modifications to the solver’s
search algorithm.

4.1 Partially-adaptive schemes

The partially-adaptive approach works around the prob-
lem of the solver always choosing the cheaper,RAID 1/0
LUs, by ignoring cost considerations in the initial selec-
tion – thereby avoiding local cost-derived minima – and
reintroducing cost in the reassignment stage. By allow-
ing more LUs with more-costlyRAID levels, the reas-
signment phase would have a larger search space to work
within, thereby producing a better overall result.

Even in this scheme, the solver still needs to decide
whether a newly-createdLU should be labeled asRAID 5
or RAID 1/0 during the initial assignment pass. It does
this by means of agoal function. The goal function can
take as input the performance, capacity, and utilization
metrics for all the array components that would be in-
volved in processing accesses to the store being placed
into the newLU. We devised a large number of possible
initial goal functions, based on the combinations of these
metrics that seemed reasonable. While it is possible that
there are other, better initial goal functions, we believe
we have good coverage of the possibilities. Here is the
set we explored:

1. allR10: always useRAID 1/0.

2. allR5: always useRAID 5.

3. AvgOfCapUtil: minimize the average of capacities
and utilizations of all the disks (theL1 norm).

4. LengthOfCapUtil:minimize the sum of the squares
of capacities and utilizations (theL2 norm) of all
the disks.

5. MaxOfCapUtil: minimize the maximum of capaci-
ties and utilizations of all the disks (theL1 norm).

6. MinAvgUtil: minimize the average utilizations of all
the array components (disks, controllers and inter-
nal buses).

7. MaxAvgUtil: maximize the average utilizations of
all the array components (disks, controllers and in-
ternal buses).



8. MinAvg�Util: minimize the arithmetic mean of the
change in utilizations of all the array components
(disks, controllers and internal buses).

9. MinAvg�UtilPerRAIDdisk:as with scheme (8), but
first divide the result by the number ofphysical
disks used in theLU.

10. MinAvg�UtilPerDATAdisk:as with scheme (8), but
first divide the result by the number ofdata disks
used in theLU.

11. MinAvg�UtilTimesRAIDdisks:as with scheme (8),
but first multiply the result by the number ofphysi-
cal disks used in theLU.

12. MinAvg�UtilTimesDATAdisks:as with scheme (8),
but first multiply the result by the number ofdata
disks used in theLU.

The intent of the various disk-scaling schemes (9–12)
was to explore ways of incorporating the size of anLU

into the goal function.

Goal functions for the reassignment phase make minimal
system cost the primary decision metric, while selecting
the right kind ofRAID level is used as a tie-breaker. As a
result, there are fewer interesting choices of goal function
during this phase, and we used just two:

1. PriceThenMinAvgUtil: lowest cost, ties resolved
using scheme (6).

2. PriceThenMaxAvgUtil: lowest cost, ties resolved
using scheme (7).

During our evaluation, we tested each of the reassign-
ment goal functions in combination with all the initial-
assignment goal functions listed above.

4.2 Fully-adaptive approach

As we evaluated the partly-adaptive approach, we found
several drawbacks that led us to try the more flexible,
fully-adaptive approach:

� After the goal functions had become cost-sensitive
in the reassignment phase, newRAID 5 LUs would
not be created. Solutions would suffer if there were
too fewRAID 5 LUs after initial assignment.

� It was not clear how well the approach would extend
to more than twoRAID levels.

� Although we were able to achieve good results with
the partially-adaptive approach, the reasons for the
results were not always obvious, hinting at a possi-
ble lack of robustness.

To address these concerns, we extended the search al-
gorithm to let it dynamically switch theRAID level of a
given LU. Every time the solver considers assigning a
store to anLU (that may already have stores assigned to
it), it evaluates whether the resultingLU would be better
off with a RAID 1/0 orRAID 5 layout.

The primary cost of the fully-adaptive approach is that
it requires moreCPU time than the partially-adaptive ap-
proach, which did not revisitRAID-level selection deci-
sions. In particular, the fully-adaptive approach roughly
doubles the number of performance-model evaluations,
which are relatively expensive operations. But fully-
adaptive approach has several advantages: the solver is
no longer biased towards a givenRAID level, because it
can identify the best choice at all stages of the assignment
process. Adding moreRAID levels to choose from is
also possible, although the total computation time grows
roughly linearly with the number ofRAID levels. And
there no longer is a need for a special goal function dur-
ing the initial assignment phase.

Our experiments showed that, with two exceptions, the
PriceThenMinAvgUtiland PriceThenMaxAvgUtilgoal
functions produced identical results for all the fully-
adaptive schemes. Each was better for one particular
workload; we selectedPriceThenMaxAvgUtilfor our ex-
periments, as it resulted in the lowest average cost. We
found that it was possible to improve the fully-adaptive
results slightly (so that they always produced the lowest
cost) by increasing the number of reassignment passes to
5, but we did not do so to keep the comparison with the
partially-adaptive solver as fair as possible.

5 Evaluation

In this section, we present an experimental evaluation of
the effectiveness of theRAID level selection schemes dis-
cussed above.

We took workload specifications from [1] and from
traces of a validated TPC-D configuration. We used the
Ergastulum solver to design storage systems to support
these workloads, ensuring for each design that the per-
formance and capacity needs of the workload would be
met. To see if the results were array-specific, we con-
structed designs for two different disk array types.

The primary evaluation criterion for theRAID-level se-
lection schemes was the cost of the generated configura-
tions, because our performance models [3, 18] predicted
that all the generated solutions would support the work-
load performance requirements. The secondary criterion
was theCPU time taken by each approach.

We chose not to run the workloads on the target phys-



Workload Capacity #stores #streams Access size Run count %reads

filesystem 0.09TB 140 140 20.0KB (�13.8) 2.6 (�1.3) 64.2%
scientific 0.19TB 100 200 640.0KB (�385.0) 93.5 (�56.6) 20.0%

oltp 0.19TB 194 182 2.0 KB (�0.0) 1.0 (�0.0) 66.0%
fs-light 0.16TB 170 170 14.8KB (�7.3) 2.1 (�0.7) 64.1%
tpcd30 0.05TB 316 224 27.6KB (�19.3) 57.7 (�124.8) 98.0%

tpcd30-2x 0.10TB 632 448 27.6KB (�19.3) 57.7 (�124.8) 98.0%
tpcd30-4x 0.20TB 1264 896 27.6KB (�19.3) 57.7 (�124.8) 98.0%
tpcd300-1 1.95TB 911 144 53.5KB (�12.8) 1.13 (�0.1) 98.3%
tpcd300-5 1.95TB 935 374 49.1KB (�10.6) 1.23 (�1.9) 92.7%
tpcd300-7 1.95TB 941 304 51.1KB (�10.7) 1.12 (�0.1) 95.0%
tpcd300-9 1.95TB 933 399 49.8KB (�10.6) 1.20 (�1.9) 85.6%

tpcd300-10 1.95TB 910 321 45.3KB (�12.3) 1.28 (�2.2) 80.3%

Table 2: Characteristics of workloads used in experiments. “Run count” is the mean number of consecutive sequential accesses
made by a stream. Thus workloads with low run counts (filesystem, oltp, fs-light) have essentially random accesses, while workloads
with high run counts (scientific) have sequential accesses.tpcdhas both streams with random and sequential accesses. The access
size and run count columns list the mean and (standard deviation) for these values across all streams in the workload.

ical arrays because it was not feasible. First, we did
not have access to the applications used for some of the
workloads—just traces of them running. Second, there
were too many of them. We evaluated over a thou-
sand configurations for the results presented; many of
the workloads run for hours. Third, some of the resulting
configurations were too large for us to construct. Fortu-
nately, previous work [1] with the performance models
we use indicated that their performance predictions are
sufficiently accurate to allow us to feel confident that our
comparisons were fair, and that the configurations de-
signed would indeed support the workloads.

5.1 Workloads

To evaluate theRAID-level selection schemes, we used
a number of different workloads that represented both
traces of real systems and models of a diverse set of
applications: an active file system (filesystem), a scien-
tific application (scientific), an on-line transaction pro-
cessing benchmark (oltp), a lightly-loaded filesystem (fs-
light), a 30GB TPC-D decision-support benchmark, run-
ning three queries in parallel until all of them com-
plete (tpcd30), thetpcd30workload duplicated (as if they
were independent, but simultaneous runs) 2 and 4 times
(tpcd30-2xand tpcd30-4x), and the most I/O-intensive
queries (i.e., 1, 5, 7, 9 and 10) of the 300GB TPC-D
benchmark run one at a time on a validated configuration
(tpcd300-query-N).

Table 2 summarizes their performance characteristics.
Detailed information on the derivations of these work-
loads can be found in [1].

5.2 Disk arrays

We performed experiments using two of the arrays sup-
ported by our solver: the Hewlett-Packard SureStore
Model 30/FC High Availability Disk Array (FC-30, [12])
and the Hewlett-Packard SureStore E Disk Array FC-60
(FC-60, [13]), as these are the ones for which we have
calibrated models.

The FC-30 is characteristic of a low-end, stand-alone
disk array of 3–4 years ago. An FC-30 has up to 30 disks
of 4 GB each, two redundant controllers (to survive a
controller failure) and 60MB of battery-backed cache
(NVRAM). Each of the two array controllers is connected
to the client host(s) over a 1 Gb/s FibreChannel network.
Our FC-30 performance models [18] have an average er-
ror of�6% and a worst-case error of�20% over a rea-
sonable range ofLU sizes.

The FC-60 is characteristic of modern mid-range arrays.
An FC-60 array can have up to 60 disks, placed in up to
six disk enclosures. Each of the two array controllers is
connected to the client host(s) over a 1 Gb/s FibreChan-
nel network. Each controller may have up to 512MB

of NVRAM. The controller enclosure contains a back-
plane bus that connects the controllers to the disk enclo-
sures, via six 40MB/s ultra-wideSCSI busses. Disks of
up to 72GB can be used, for a total unprotected capac-
ity of 4.3 TB. Dirty blocks are mirrored in both con-
troller caches, to prevent data loss if a controller fails.
Our interpolation-based FC-60 performance models [3]
have an average error of about 10% over a fairly wide
range of configurations.
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(a)FC-30 array (b) FC-60 array

Figure 2: Tagger results for the FC-30 and FC-60 disk arrays. The results for each tagger are plotted within a single bar of the
graph. Over all workloads, the bars show the proportion of time each tagger resulted in a final solution with the lowest cost (as
measured over all varieties ofRAID level selection), within 110% of the lowest cost, within 150% of the lowest cost and within
200% of the cost. The taller and darker the bar, the better the tagger. Above each bar, the points show the maximum (worst) and
average results for the tagger, as a multiple of the best cost. TheallR10 andallR5 taggers tag all stores asRAID 1/0 or RAID 5
respectively. Therandomtagger allocates stores randomly to eitherRAID level. TheIOPSmodels are based on very simple array
models. ThePerfVect... and UtilizationOnly taggers are based on the complete analytical models as used by the solver. The
remaining taggers are rule-based.

5.3 Comparisons

As described above, the primary criteria for comparison
for all schemes is that of total system cost.

5.3.1 Tagger results

Figure 2 shows the results for each of the taggers for the
FC-30 and FC-60 arrays. There are several observations
and conclusions we can draw from these results.

First, there is no overall winner. Within each array type,
it is difficult to determine what the optimal choice is. For
instance, compare thePerfVectMaxandIOPStaggers for
the FC-30 array.IOPShas a better average result than
PerfVectMax, but performs very badly on one workload
(filesystem), whereasPerfVectMaxis much better in the
worst case. Depending on the user’s expected range of
workloads, either one may be the right choice.

When comparing results across array types, the situation

is even less clear—the sets of best taggers for each ar-
ray are completely disjoint. Hence, the optimal choice
of RAID level varies widely from array to array, and no
single set of rules seems to work well for all array types,
even when a subset of all array-specific parameters (such
as the test for capacity-boundedness) is used in addition.

Second, the results for the FC-60 are, in general, worse
than for the FC-30. In large part, this is due to the rela-
tive size and costs of the arrays. Many of the workloads
require a large number (more than 20) of the FC-30 ar-
rays; less efficient solutions—even those that require a
few more complete arrays—add only a small relative in-
crement to the total price. Conversely, the same work-
loads for the FC-60 only require 2–3 arrays, and the rela-
tive cost impact of a solution requiring even a single extra
array is considerable. Another reason for the increased
FC-60 costs is that many of the taggers were hand-tuned
for the FC-30 in an earlier series of experiments [1].

With a different array, which has very different perfor-
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(a)FC-30 array (b) FC-60 array

Figure 3: Partially-adaptive results for the FC-30 and FC-60 disk arrays. There are two bars for each initial assignment goal
function: the one on the left uses thePriceThenMinAvgUtilreassignment goal function, the one on the rightPriceThenMaxAvgUtil.

mance characteristics, the decisions as to what consti-
tutes a “large write” become invalid. For example, con-
sider the stripe size setting for each of the arrays we used.
The FC-60 uses a default of 16KB, whereas the FC-30
uses 64KB, which results in different performance for
I/O sizes between these values.

Third, even taggers based completely on the solver mod-
els perform no better, and sometimes worse, than taggers
based only on simple rules. This indicates that tagging
solutions are too simplistic; it is necessary to take into
account the interactions between different streams and
stores mapped to the sameLU or array when selecting
RAID levels. This can be done through the use of adap-
tive algorithms, as shown in the following sections.

5.3.2 Partially-adaptive results

Figure 3 shows results for each of the partially-adaptive
rules for the FC-30 and FC-60 arrays. Our results show
that the partly adaptive solver does much better than the
tagging approaches. In particular, minimizing the aver-
age capacity and utilization works well for both arrays
and all the workloads.

From the data, it is clear thatallR5 is the best partially-

adaptive rule for the FC-30 but not for the FC-60. How-
ever the rules based on norms (AvgOfCapUtil, MaxOf-
CapUtil and LengthOfCapUtil) seem to perform fairly
well for both arrays—an improvement over the tagging
schemes. The family of partially-adaptive rules based on
change in utilization seems to perform reasonably for the
FC-30, but poorly for the FC-60—with one exception,
MinAvg�UtilTimesDataDisks, that performed as well as
the norm-rules.

5.3.3 Fully-adaptive results

Tables 3 and 4 show, for each workload, the best re-
sults achieved for each family ofRAID level selection
methods. As can be seen, the fully-adaptive approach
finds the best solution in all but one case, indicating that
this technique better searches the solution space than the
partly adaptive and tagging techniques. Although the
fully-adaptive approach needs more modifications to the
solver, a single goal function performs nearly perfectly
on both arrays, and it is more flexible.



Taggers Partly adaptive Fully
Workload PerfVectMax IOPSdisk R10SmallWriteAggressive AllR5 AvgOfCapUtil adaptive

filesystem 1% 1% 1% 0% 0% 0%
filesystem-lite 1% 1% 3% 0% 0% 0%

oltp 1% 1% 1% 0% 0% 0%
scientific 2% 2% 2% 0% 2% 0%

tpcd30-1x 7% 8% 8% 0% 0% 0%
tpcd30-2x 4% 2% 2% 2% 2% 0%
tpcd30-4x 1% 44% 44% 2% 2% 2%

tpcd300-query-1 0% 0% 0% 0% 0% 0%
tpcd300-query-5 18% 4% 4% 0% 0% 0%
tpcd300-query-7 25% 0% 0% 0% 4% 0%
tpcd300-query-9 22% 4% 8% 0% 4% 0%

tpcd300-query-10 4% 8% 8% 0% 0% 0%

average 7.2% 6.3% 6.8% 0.3% 1.2% 0.12%

Table 3: Cost overruns for the best solution for each workload andRAID selection method for the FC-30 array. Values are in percent
above the best cost over all results for that array—that is, if the best possible result cost $100, and the given method resulted in a
system costing $115, then the cost overrun is 15%. Increasing the number of reassignment passes to 5 results in the fully-adaptive
scheme being best in all cases; we do not report those numbers to present a fair comparison with the other schemes.

Taggers Partly adaptive Fully
Workload FC60UtilizationOnly IOPScapacity allR10 AvgOfCapUtil MaxOfCapUtil adaptive

filesystem 0% 44% 0% 0% 0% 0%
filesystem-lite 24% 0% 24% 0% 0% 0%

oltp 0% 2% 0% 0% 0% 0%
scientific 0% 108% 0% 0% 0% 0%

tpcd30-1x 12% 12% 0% 0% 0% 0%
tpcd30-2x 9% 9% 0% 0% 0% 0%
tpcd30-4x 7% 7% 0% 7% 0% 0%

tpcd300-query-1 7% 2% 50% 5% 0% 0%
tpcd300-query-5 61% 2% 37% 0% 9% 0%
tpcd300-query-7 32% 1% 0% 0% 20% 0%
tpcd300-query-9 36% 2% 10% 0% 0% 0%

tpcd300-query-10 12% 2% 50% 9% 0% 0%

average 16.7% 15.9% 14.3% 1.75% 2.4% 0%

Table 4: Cost overruns for the best solution for each workload andRAID selection method for the FC-60 array. All values are
percentages above the best cost seen across all the methods.



5.3.4 CPU time comparison

The advantage of better solutions does not come without
a cost: Table 5 shows that theCPU time to calculate a
solution increases for the more complex algorithms, be-
cause they explore a larger portion of the search space.
In particular, tagging eliminates the need to search any
solution that uses anLU with a different tag, and makes
selection of a newLU’s type trivial when it is created,
whereas both of the adaptive algorithms have to perform
a model evaluation and a search over all of theLU types.

The fully-adaptive algorithm searches all the possibili-
ties that the partially-adaptive algorithm does, and also
looks at the potential benefit of switching theLU type
on each assignment. It takes considerably longer to run.
Even so, this factor is insignificant when put into con-
text: our solver has completely designed enterprise stor-
age systems containing $2–$5 million of storage equip-
ment in under an hour ofCPU time. We believe that the
advantages of the fully-adaptive solution will outweigh
its computation costs in almost all cases.

5.3.5 Implementation complexity

A final tradeoff that might be considered is the imple-
mentation complexity. The modifications to implement
partially-adaptive schemes on the original solver took a
few hours of work. The fully-adaptive approach took a
few weeks of work. Both figures are for a person thor-
oughly familiar with the solver code. However, the fully-
adaptive approach clearly gives the best results, and is in-
dependent of the devices and workloads being used; the
development investment is likely to pay off very quickly
in any production environment.

6 Related work

The published literature does not seem to report on sys-
tematic, implementable criteria for automaticRAID level
selection. In their original paper [20], Patterson, Gib-
son and Katz mention some selection criteria forRAID 1
throughRAID 5, based on the sizes of read and write
accesses. Their criteria are high-level rules of thumb
that apply to extreme cases, e.g., “if a workload contains
mostly small writes, useRAID 1/0 instead ofRAID 5”.
No attempt is made to resolve contradictory recommen-
dations from different rules, or to determine thresh-
old values for essential definitions like “small write”
or “write-mostly”. Simulation-based studies [2, 14, 17]
quantify the relative strengths of differentRAID levels
(including some not mentioned in this paper), but do not
derive general guidelines for choosing aRAID level for

given access patterns.

The HP AutoRAID disk array [24] side-steps the issue
by dynamically, and transparently, migrating data blocks
betweenRAID 1/0 andRAID 5 storage as a result of data
access patterns. However, the AutoRAID technology is
not yet widespread, and even its remapping algorithms
are themselves based on simple rules of thumb that could
perhaps be improved (e.g., “put as much recently written
data inRAID 1/0 as possible”).

In addition toRAID levels, storage systems have multiple
other parameters that system administrators are expected
to set. Prior studies examined how to choose the num-
ber of disks perLU [22], and the optimal stripe unit size
for RAID 0 [9], RAID 5 [8], and other layouts [19]. The
RAID Configuration Tool [27] allows system administra-
tors to run simple, synthetic variations on a user-supplied
I/O trace against a simulator, to help visualize the perfor-
mance consequences of each parameter setting (includ-
ing RAID levels). Although it assists humans in explor-
ing the search space by hand, it does not automatically
search the parameter space itself.

Apart from the HP AutoRAID, none of these systems
provide much, if any, assistance with mixed workloads.

The work described here is part of a larger research pro-
gram at HP Laboratories with the goal of automating the
design, construction, and management of storage sys-
tems. In the scheme we have developed for this, we run
our solver to develop a design for a storage system, then
implement that design, monitor it under load, analyze the
result, and then re-design the storage system if neces-
sary, to meet changes in workload, available resources,
or even simple mis-estimates of the original requirements
[4]. Our goal is to do this with no manual intervention at
all – we would like the storage system to be completely
self-managing. An important part of the solution is the
ability to design configurations and data layouts for disk
arrays automatically, which is where the work described
in this paper contributes.

7 Summary and conclusions

In this paper, we presented a variety of methods for se-
lecting RAID levels, running the gamut from the ones
that consider each store in isolation and make irrevocable
decisions to the ones that consider all workload interac-
tions and can undo any decision. We then evaluated all
schemes for each family in isolation, and then compared
the cost of solutions for the best representative from each
family. A set of real workload descriptions and models
of commercially-available disk arrays was used for the
performance study. To the best of our knowledge, this is
the first systematic, automatable attempt to selectRAID



Workload Taggers Partly adaptive Fully adaptive

filesystem 92 (�14) 131 (�42) 273 (�53)
filesystem-lite 51 (�3) 85 (�33) 232 (�28)

oltp 212 (�29) 279 (�46) 669 (�155)
scientific 66 (�5) 116 (�49) 277 (�55)

tpcd30-1x 44 (�10) 85 (�23) 782 (�197)
tpcd30-2x 265 (�49) 393 (�92) 3980 (�1414)
tpcd30-4x 1098 (�159) 2041 (�739) 24011 (�7842)

tpcd300-query-1 689 (�44) 1751 (�2719) 1541 (�300)
tpcd300-query-5 1517 (�85) 2907 (�3593) 4572 (�1097)
tpcd300-query-7 1556 (�90) 2401 (�2126) 5836 (�1345)
tpcd300-query-9 1680 (�73) 2693 (�2362) 6647 (�2012)

tpcd300-query-10 1127 (�77) 2144 (�1746) 2852 (�563)

mean 700 (�633) 1252 (�2016) 4306 (�6781)

Table 5: Mean and (standard deviation) of theCPU time in seconds, for each workload andRAID selection method for the FC-60
array.

levels in the published literature.

The simpler tagging schemes are similar to accepted
knowledge and to the back-of-the-envelope calculations
that system designers currently rely upon. However, they
are highly dependent on particular combinations of de-
vices and workloads, and involve hand-picking the right
values for many constants, so they are only suitable for
limited combinations of workloads and devices. Further-
more, because they put restrictions on the choices the
solver can make, they result in poorer solutions.

IntegratingRAID level selection into the store-to-device
assignment algorithm led to much better results, with the
best results being obtained from allowing the solver to
revise itsRAID-level selection decision at any time.

We showed that the benefits of the fully-adaptive scheme
outweigh its additional costs in terms of computation
time and complexity. Analysis of the utilization data
from the fully-adaptive solver solutions showed that
some of the solutions it generated in our experiments
were provably of the lowest possible cost (e.g., when the
capacity of every disk, or the bandwidth of all but one
array, were fully utilized).

For future work, we would like to explore the implica-
tions of providing reliability guarantees in addition to
performance; we believe that the fully-adaptive schemes
would be suitable for this, at the cost of increased run-
ning times. We would also like to automatically choose
components of different cost for each individualLU

within the arrays, e.g., decide between big/slow and
small/fast disk drives according to the workload being
mapped onto them; and to extend automatic decisions to
additional parameters such asLU stripe size and disks
used in anLU.
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