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Abstract 
Designing a SAN fabric involves finding a network of hubs, switches and links to connect hosts to their storage devices. The 
network must be capable of simultaneously meeting the data flow requirements between multiple host-device pairs, and it 
must do so cost-effectively, since large-scale SAN fabrics can cost millions of dollars. Moreover, the network must be robust 
to failures of fabric elements. Given that the data flows can number in the hundreds, simple over-provisioned manual designs 
are often not attractive; they cost significantly more than they need to, may not meet the performance needs, may expend 
valuable resources in the wrong places, and are subject to human error. 

Producing SAN fabric designs automatically can address these difficulties, but it is a non-trivial problem; it extends the NP-
hard minimum-cost fixed-charge multicommodity network flow problem to include degree constraints, node capacities, node 
costs, unsplittable flows, and other requirements. Nonetheless, we have developed two efficient algorithms for automated 
SAN fabric design. We give an overview of these algorithms and compare their performance over a range of design 
problems. We also discuss how they have been extended to reprovision existing SAN fabrics. Finally, we describe how, 
through the creation of the HP SAN Designer tool, these algorithms have been transferred to the HP SAN design community 
with the expert help of the Network and Storage Support Services Organization. 

 

1 Introduction 
A SAN (storage area network) consists of a group of servers (or hosts) connected to shared storage devices (such 
as disks, disk arrays and tape drives) through an interconnection fabric consisting of switches, hubs, and links. An 
example of a SAN is shown in Figure 1, with hosts represented in the top row of components, devices in the 
bottom row, and switches and hubs in between. SANs offer many advantages over direct-connected local storage, 
including superior connectivity of servers to storage devices, better utilization of storage resources, centralized 
administration and management, increased scalability, and improved performance. 

 

 

 

 

 
 

Figure 1. A simple, single-layer SAN fabric. Hosts appear in the top row,  
devices in the bottom row, and switches and hubs in between. 

 

In spite of SANs’ many advantages, their adoption is hampered by the complexity of designing them. Designing 
even a small SAN fabric requires considerable time and effort from IT experts, whose manual methods often 
result in expensive, over-provisioned designs. This problem intensifies as the designs get larger and more 
complex. The SAN fabric can comprise 10-20% of the total storage system cost, and SAN designs that require 
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millions of dollars of fabric alone are becoming more common. We have witnessed a factor of three difference in 
the cost of a SAN between a manual design ($4m) that took several days and an automatically-generated one 
($1.4m) that took a few minutes. 

Design mistakes can be subtle and therefore easy to overlook, yet potentially very costly; poor performance is 
commonplace, and downtime in failure situations can result if the failure-tolerance aspects are mis-designed. As 
SANs grow to include hundreds or even thousands of storage devices, it becomes increasingly difficult, even for 
SAN experts, to manually design cost-effective and reliable SANs. 

We believe the solution to these problems is to automate SAN design. An automated method must account for the 
performance requirements (to avoid queuing or packet loss), and should try to minimize system cost, because 
SAN components are typically quite expensive. Automated design would enable wider deployment of SANs, and 
increase the likelihood that the systems deployed would meet real needs. 

We have developed just such a solution: a tool to design SANs automatically. We call it Appia, after the Appian 
Way, part of the network of roads leading to ancient Rome. Appia includes two algorithms developed at HP Labs 
for cost-effective and reliable SAN fabric design. These two approaches, which we call Flowmerge and 
Quickbuilder, demonstrate complementary strengths. Flowmerge, which is more computationally intensive, tends 
to find lower-cost designs for SANs with sparse connectivity requirements, whereas Quickbuilder excels when 
connectivity requirements are dense. We found that the better of the two designs is, on average, within 33% of the 
optimal design cost for empirical test problems that are small enough to solve optimally. Moreover, these designs 
are found in a few minutes or less for SANs with 50 hosts and 100 devices, a size typical of the largest current 
installations. Appia’s algorithms are also capable of reprovisioning existing SAN fabrics to avoid costly, error-
prone disruptions to the existing network infrastructure. Appia has been transferred to storage field the through 
the creation of the HP SAN Designer, a joint effort between HP Labs and the Storage Support Services 
Organization (N3SO). 

 

2 The SAN fabric design problem 
The SAN fabric design problem can be stated quite simply: we are given a set of hosts, a set of storage devices, 
and a set of requirements in the form of data flows between host-device pairs. Each flow has a desired bandwidth. 
The goal is to build a minimum-cost SAN fabric to support all of these requirements simultaneously. To do so, 
one must select a set of fabric nodes (switches and hubs) from available types, a set of links connecting pairs of 
nodes (hosts, devices and fabric nodes), a topology with which to join these together, and a single path through 
the network for each flow. (The single-path restriction arises from SCSI request-ordering constraints.) 

The resulting fabric design must be feasible - that is, it must satisfy constraints that ensure it is buildable, and it 
must support the connection and performance requirements. These constraints are: (1) the number of links 
connected to a host, device or fabric node must not exceed the number of ports available there (these restrictions 
are called degree constraints) and (2) the flow routing must honor the bandwidth limitations of links and fabric 
nodes. Because packets travel differently through hubs and switches, their bandwidth constraints differ. Packets 
routed into a switch are forwarded directly to the next destination in their path. In contrast, packets routed into a 
hub are transmitted through all connected hubs and all links attached to these hubs; they are seized by their next 
destination. Thus, the total flow into an interconnected set of hubs is limited by the minimum of the bandwidth of 
each individual hub, the bandwidth of each connected link, and the bandwidth of each port used by these links. 
The bandwidth of switches is therefore more efficiently utilized than hub bandwidth.  

In addition to the constraints described above, it is also important that a SAN fabric provide redundancy to avoid 
access interruptions when fabric elements fail. The Flowmerge and Quickbuilder algorithms, as they are described 
in sections 3 and 4, build non-redundant fabrics. However, section 6 describes how these algorithms have been  
extended to provide two different types of reliability.  

 
 



2.1 Related work 
Currently, SAN design is done manually by IT experts. For small designs, they typically use drag-and-drop 
interfaces, an error-prone approach that makes it hard to include performance requirements. For larger SANs, the 
alternative is using canned topologies that often result in grossly over-provisioned designs. While over-
provisioning can be advantageous, it is important that it is done strategically to provide high performance, 
scalability, reliability, and robustness to changes in requirements. One canned design used commonly today is the 
Brocade Core-Edge architecture [4]. Such standardized topologies are used when the SAN designers have no 
systematic way to predict the connectivity and data flow requirements in their SANs, and so opt for full 
connectivity between hosts and devices. But this flexibility comes at a very high price. In general, when any 
information is available about SAN requirements, far more cost-effective designs can be found. 

As part of our search for algorithms to apply to this problem, we turned to the literature in network design. 
Unfortunately, most traditional network design approaches minimize only link costs, because switches are 
cheaper than trenching in wide area telephone networks, which are the target of most of this work. In the SAN 
case, the opposite is usually the case: a fully loaded 64-port FibreChannel “storage director” switch costs close to 
$200,000, while individual fibre links cost a few hundred dollars. As a result, the existing research in network 
design proved less applicable than we had hoped.  

The SAN fabric design problem generalizes and extends several NP-hard problems in the network design 
literature, including the multicommodity network design problem [8,3,2,7,9,5,1], which involves choosing a 
minimum-cost set of capacitated, fixed-cost links to connect a known set of nodes in order to satisfy 
multicommodity flow requirements. This problem is known to be NP-hard even in the single commodity case, 
and is notoriously difficult to solve in practice. Unlike in multicommodity network design, the nodes of a SAN 
fabric are not known a priori; instead, they must be selected from a wide variety of types of hubs and switches, 
differing in attributes such as cost, bandwidth, and number of available ports. This difference makes the search 
space of the SAN fabric design problem considerably larger than conventional network design problems. 
Moreover, SAN fabric design further generalizes the multicommodity network design problem to include degree 
constraints, node capacities, node costs, and unsplittable flows.  

The many features of the SAN design problem have been addressed individually or in small subsets in previous 
work. (See [11] for a more detailed literature review.) The first to address all of its features in a common 
framework was an algorithm called Merge, also developed at HP Labs [10]. Merge found cost-effective designs 
for small problems but failed to find feasible designs for larger problems. The algorithms presented here are 
proven to find feasible designs under a reasonable set of conditions, and their designs are generally more cost-
effective than those found by Merge. 

 

3 The Flowmerge algorithm 
This section provides an overview of the Flowmerge algorithm. Flowmerge is named for the way it “merges” 
individual flows into sets of flows that share a hub, switch or link. It was motivated by the observation that when 
two flows are routed together along a link from host or device they have in common, a port on that host or device 
is conserved. Flowmerge attempts to alleviate the shortage of host and device ports by selecting subsets of flows 
with common hosts or devices, and routing them together through shared links. 

Flowmerge is a recursive algorithm that creates a SAN design by introducing, at each recursive application, a set 
of fabric nodes and links, with no links between fabric nodes in the set. When the algorithm terminates, the fabric 
design consists of one or more “layers” of nodes, where there are links between but not within layers. An example 
of a layered fabric produced by Flowmerge is shown in Figure 2. The top and bottom rows of components contain 
hosts and devices, respectively, and the remaining components are fabric nodes. 

 



 
Figure 2. A sample SAN fabric produced by Flowmerge 

 

The process through which one layer of fabric is introduced is called Single-Layer Flowmerge. The input to 
Single-Layer Flowmerge is a set H of hosts, a set D of devices, and flow requirements F between them. Single-
Layer Flowmerge produces a series of single-layer fabric designs to support the flow requirements. Each design in 
the series is feasible with respect to all constraints except, possibly, the degree constraints on hosts and devices. 
The initial design consists of a direct host-device link for each flow. This design is typically infeasible because 
one or more hosts or devices has fewer ports than incident links. The difference between the numbers of incident 
links and available ports on a given host or device is called its port violation. Each subsequent design in the series 
has a smaller total port violation than the previous design, or a lower cost than the previous design if both designs 
are feasible.  

To see how this series of designs is obtained, consider an arbitrary single-layer fabric. Associated with each fabric 
node in the design is a subset of flow requirements routed via that node. Similarly, associated with each direct 
host-device link in the fabric is a subset of flows routed along that link. In general, the flow requirements are 
partitioned into disjoint subsets, such that each flow requirement is in exactly one subset. Each subset in the 
partition has an associated fabric node or direct host-device link through which all flows in the subset are routed. 
We call these subsets flowsets.  

 

 

 

 

 
 

 
Figure 3. Example application of Single-Layer Flowmerge. The problem has 3 hosts and 3 devices, each 
with 2 ports, and a single type of switch available with 8 ports. The eight flows in the problem each have 
bandwidth 33 MB/s. Links and ports have bandwidth 100 MB/s. Six successive designs are shown, 
beginning with the one that assigns each flow to its own link. In each design, hosts and devices with the 
highest port violation are circled. For example, in the first design, the highest port violation is one: there are 
two hosts and two devices each with three incident links and only two ports. Each design in the series 
reduces the port violation on one host or device from the previous design by merging two flowsets together. 
After four mergers, all port violations are eliminated. The last merge eliminates one fabric node and 
thereby reduces the cost of the fabric. 

Single-Layer Flowmerge begins with the finest partition of the flow requirements: each flow is in its own flowset. 
At each iteration, a new, coarser, partition is obtained by merging two flowsets together. When merging two 
flowsets, we must select a fabric node type among available types with which to route the flows in the merged 



flowset, and the links connecting hosts and devices to the node along which we route the flows. The node type is 
selected based on the number of ports available on the node and the cost of using the node (including the cost of 
required ports and links). We select the flowsets to merge to alleviate port violations, favoring reductions on the 
hosts and devices with the most severe violations. Cost is a tie-breaker criterion. Once two flowsets are merged, 
they are never split. Single-Layer Flowmerge continues merging flowsets until either no two flowsets can be 
merged, or all port violations have been eliminated and no merger produces a cost savings. Single-Layer 
Flowmerge terminates, because after a finite number of mergers (one less than the number of flows, at most) only 
a single flowset remains, so no further mergers are possible. Figure 3 demonstrates how Single-Layer Flowmerge 
works on a small example. 

A single layer of fabric nodes is often not enough to alleviate all port violations on hosts and devices. When this is 
true, Single-Layer Flowmerge is reapplied recursively to generate cascading layers of fabric nodes. With the 
introduction of each layer, host and device port violations are reduced. For a more detailed description of how 
Flowmerge creates multiple layers of fabric, please see [11]. 

 

4 The Quickbuilder algorithm 
Our second algorithm for SAN fabric design is called Quickbuilder. It was motivated by the following 
observation: since flows cannot be split across multiple paths in the SAN fabric, each flow must be assigned to a 
single port on its host and device. The assignment of flows to ports significantly impacts the remainder of the 
SAN design. Specifically, a given port assignment creates a partition of the host and device ports into disjoint 
subsets of ports called port groups. The port group of port p is a set of ports that includes p; if q is a port in the 
port group and a flow assigned to q is also assigned to port r, then r is in the port group. In short, the port group of 
port p includes p, all ports p must communicate with, all ports they communicate with, etc. The critical insight is 
that each port group can be treated as an independent, smaller design problem. We refer to the fabric required to 
support a single port group as a module. In general, the fewer ports in a port group, the smaller the module is 
required to support its flows. Thus, a finer decomposition results in a less costly fabric. Quickbuilder seeks an 
assignment that results in a fine decomposition.  

Quickbuilder is a two-phased algorithm. In the first phase of the algorithm, the port assignment phase, 
Quickbuilder assigns each flow, one at a time, to a single port on its host and a single port on its device. 
Quickbuilder selects the assignment for the flow that results in the lowest estimated cost impact on the fabric. 
When estimating the cost of a flow’s assignment, Quickbuilder determines the port groups that would be created 
by adding the assignment to previous flows’ assignments. It then estimates the cost to support each of these port 
groups with a module. Quickbuilder chooses the assignment whose incremental estimated total cost is lowest. It 
continues making the lowest-cost assignment for each flow until all flows have been assigned to ports.  

The assignment obtained in the first phase implies a partition into port groups. The second, module-building phase 
of the algorithm considers each port group created in the port assignment phase separately, and builds a module to 
support the flows assigned to its ports. Quickbuilder seeks the lowest-cost module for each port group. It chooses 
from one of three different types of modules, depending on the number of ports in the port group and the total 
bandwidth of flow assigned to it. A direct-link module consists of a single host-device link; it is used only for port 
groups containing two ports. A hub module is composed of one or more hubs in series, each connected to the next 
by a single link; hub modules are used whenever a direct-link module is insufficient, but the bandwidth of flows 
in the port group does not exceed the bandwidth of a hub. The third type of module, a switch-module, is one that 
contains at least one switch. It is only used when the other types of modules cannot be. This selection criterion is 
based on the realistic assumption that the cost of a link is less than that of a hub, and both are dramatically less 
than the cost of a switch.  

Two examples of Quickbuilder designs are shown in Figure 4 and Figure 5. The fabric in Figure 5 was developed 
by Quickbuilder with the same inputs that Flowmerge used to find the fabric in Figure 2. For this problem, 
Quickbuilder's assignment of flows to ports led to two port groups, one of which is very large, containing all but 
two ports. The fabric contains one direct host-device link, and one very large module with three interconnected 
switches. Figure 4 is a solution to the SAN design problem for which Flowmerge designed the fabric in Figure 1. 



In this fabric, Quickbuilder's port assignment created five port groups. Two port groups are supported by direct 
links, two larger port groups are supported by hubs, and the largest is supported by two switches connected to 
each other. In the next section we compare the Quickbuilder and Flowmerge solutions in more detail. 
 

 
 

Figure 4. A sample SAN fabric produced  
by Quickbuilder (cf. Figure 1) 

Figure 5: A second Quickbuilder SAN fabric  
(cf. Figure 2) 

 

5 Evaluation of the algorithms 
We have no analytical bounds to describe how close the Flowmerge and Quickbuilder designs are to optimal. 
However, we have done extensive empirical testing to compare their designs to each other and to optimal designs 
produced by solving an integer program. This comparison is described in detail in [11]; we summarize it here. 

Naturally, the best evaluation of Appia comes from applying its algorithms in a real SAN environment and 
comparing their designs to alternative designs produced by SAN design experts. This comparison should include 
several metrics, including fabric cost, performance, availability, scalability and even aesthetics. We have had few 
opportunities to evaluate Appia algorithms in this context so far, but in those cases, Appia found much cheaper 
designs than those produced manually. In one such case, a consultant worked for several days to produce a $4 
million design on a problem that Appia solved for $1.4 million in a few minutes. The consultant’s design used 
several expensive, 64-port switches, and a completely symmetrical solution; Flowmerge found ways to achieve 
the same goals using much cheaper 16-port switches. Nonetheless, we will refrain from making strong claims 
about the benefits of our approach until we have had more opportunities to evaluate it on a wider range of real-
world problems. The recent release of the HP SAN Designer should provide such opportunities in abundance. 

In the meantime, we have created a large set of realistic test problems based on our observations about real-world 
problems. The problems vary in size (numbers of hosts and devices) and in properties of the flow requirements.  

In comparing the two algorithms’ effectiveness over these test problems, we found that Flowmerge produces 
lower cost designs than Quickbuilder for smaller problems, whereas for large problems, Quickbuilder produces 
dramatically cheaper designs. The relative advantages of Quickbuilder can be seen by a direct comparison of the 
fabrics in Figure 2 and Figure 5, found by Flowmerge and Quickbuilder, respectively, for the same problem. The 
Flowmerge fabric uses five switches and fifteen hubs, and costs $265,080. Quickbuilder produced a $133,440 
fabric using only three switches. This problem has a relatively large number of flow requirements per host and 
device. In such problems, often every possible assignment of flows to ports results in one port group containing 
all or most of the host and device ports. Thus, problems of this type require a large fabric through which almost 
all host and device ports are interconnected. Quickbuilder’s switch-module building method makes very cost-
effective use of switches in this setting. 

Flowmerge usually needs multiple fabric layers to connect all ports in a large port group. Its myopia in building 
independent layers and in performing only pairwise mergers rather than multi-flowset mergers, both without 
backtracking, impairs its effectiveness in such problems. For example, in Figure 2, the middle layer of fabric was 
introduced first without regard for how it would affect future layers, and subsequent layers were built 
independently of the others. Moreover, it overlooked cost-saving multi-flowset mergers in the outermost layers.  

Contrastingly, Flowmerge's relative strengths for problems with fewer flows per host and device are apparent 



when comparing the fabrics in Figure 1 and Figure 4 for the same problem. Flowmerge's $63,720 fabric uses only 
one switch and three hubs, whereas Quickbuilder produced a more expensive $97,120 fabric. This might be 
explained by Quickbuilder's quite myopic port assignment method, which ignores the flows that have yet to be 
assigned while making its current assignment. The port assignment determines the decomposition of ports into 
port groups, and thereby a decomposition of flows into disjoint subsets that can be routed through independent 
fabric elements. In this particular example, Flowmerge's fabric has four distinct port groups, the largest containing 
sixteen ports. Quickbuilder created five port groups with twenty-four ports in the largest group. Large port groups 
typically lead to more fabric elements. Flowmerge excels at finding finer decompositions in less dense problems. 
Thus, Flowmerge's strength is assigning flows to ports in such a way to yield smaller port groups, whereas 
Quickbuilder is better at building modules for large port groups when they are unavoidable. This supports an 
obvious strategy: run both algorithms, and pick the better solution. When the HP SAN Designer invokes the 
Appia algorithms for a SAN design, it does exactly that. 

In comparing Appia designs to optimal ones produced by an integer program (IP), we could only compare to the 
smallest problems in our test suite. A problem with 10 hosts and 10 devices has over forty thousand binary 
variables and seventy five thousand constraints, a size far beyond the capabilities of today's commercial IP 
solvers. Figure 6 focuses solely on the smallest problems, with five hosts and five devices, because these 
problems can be solved optimally by the IP. It shows the relationship between the optimal design cost and the cost 
of the designs produced by the two heuristics. It indicates that for small problems, Flowmerge and Quickbuilder 
find solutions that are, on average 38% and 55% over the optimal fabric cost, respectively. Though it is not shown 
in this graph, a closer inspection of the individual tests reveals that in all of these small tests except for a few in 
which each host and device has a large number of low bandwidth flows relative to its total port bandwidth, 
Flowmerge and Quickbuilder find designs that average within 13% and 25% of the optimal design cost, 
respectively. The fourth bar contains the cost produced by the linear programming (LP) relaxation of the integer 
program, created by relaxing integrality constraints on the IP variables. The LP does not produce usable designs, 
but it does provide a lower bound on the optimal cost. In these small problems, the lower cost bound is, on 
average, half of the optimal cost. 
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Figure 6: Cost comparisons of the resulting SAN designs for four different design 
algorithms, averaged across all 5 host, 5 device tests. “Integer program” (IP) produces 
optimal solutions, Flowmerge and Quickbuilder are heuristics that produce feasible 
solutions; LP relaxation produces a guaranteed lower bound, but (in general) infeasible 
solutions. 

In addition to comparing the cost-effectiveness of the designs produced by Flowmerge and Quickbuilder, it is 
interesting to compare their relative efficiency. Quickbuilder is dramatically faster than Flowmerge; for our 
largest test problems, with 50 hosts, 100 devices and 600 flows, Flowmerge finds a design in less than 10 minutes 
whereas Quickbuilder finds one in less than 40 seconds. Both algorithms’ running times are well within the range 
of practicality for implementation within an interactive tool such as HP SAN Designer. 

 



6 Reliability  
It is critical in most business environments that a SAN continues to provide access to data even in the event of 
failures of fabric elements. The Flowmerge and Quickbuilder algorithms, as they have been described, do not 
address reliability. However, a simple method for reliable SAN design is to include two copies of a fabric that 
supports all of the flow requirements. Thus, any algorithm to design a SAN fabric without reliability can be 
generalized to create such a doubled network, provided a sufficient number of ports are available on hosts and 
devices. One simply reserves half of the ports available on each host and device, finds a non-reliable design using 
the remaining ports, duplicates this fabric and attaches the second copy to the reserved host and device ports. The 
combined fabric provides for each flow two simultaneously available paths that are non-intersecting, i.e., they 
have no common fabric element. It can therefore support all flow requirements even in the event of simultaneous 
failure of multiple elements in one copy of the fabric. 

Because it is rare that more than one network element is non-operational at any given time, it is generally 
considered sufficient to design SAN fabrics with no single point of failure. A generalization of Flowmerge can be 
used to that end. A rough outline of the method is as follows. The first step is to reserve a single port on each host 
and device, and build a primary fabric with the remaining ports by applying a minor variation of the Flowmerge 
algorithm. This variation ensures that for each host and device, a fabric failure in the primary fabric affects flows 
from at most one port on that host or device. The second step is to apply a different variation of Flowmerge to 
build a secondary fabric with the reserved ports and a duplicate set of flows. This secondary fabric must support 
the flows impacted by any single fabric failure in the primary network. In this Flowmerge variation, flowsets still 
correspond to flows routed together through a common fabric node, but these flows need not be routed 
simultaneously. Instead, only the flows affected by the same fabric failure in the primary network need to be 
supported at once. The design of the secondary fabric takes into account the specific vulnerabilities of the primary 
fabric. This approach to fault-tolerant SAN design creates two non-intersecting paths for each flow (one in each 
of the primary and secondary fabrics) without requiring that these paths be simultaneously available.  

 

7 Reprovisioning SAN fabrics 
Storage needs inevitably evolve over time. Many SAN designs today are done in an environment in which a SAN 
already exists and needs to be modified to adapt to changed requirements. Thus, perhaps more important than the 
problem of designing a SAN fabric from scratch is that of reprovisioning an existing SAN to accommodate 
changes and additions to hosts, devices and flow requirements. In reprovisioning, one would like to make use of 
existing fabric elements, and must also avoid unnecessary disruptions to existing connections. Because the wiring 
of SAN fabrics is typically very complex, recabling requires expensive expert labor and is quite error-prone. 

We have created a three-phased method for reprovisioning that leverages both the Flowmerge and Quickbuilder 
algorithms. In the first phase of this method, we attempt to route flows in the existing network. If there are flows 
that cannot be routed, then in the second phase we selectively add links to the network in order to provide paths 
for unrouted flows. If adding links is insufficient to provide routes for all flows, we apply a more drastic approach 
in the third phase: we treat the existing hardware as spare parts whose costs are zero, and we solve a new SAN 
fabric design problem using either of the existing algorithms. Because the algorithms regard the spare parts as 
free, they favor the reuse of the existing hardware wherever it is practical.  

In situations where requirements change dramatically and unpredictably, this approach will result in disruptions to 
existing wiring patterns. Because recabling is often impractical, we are exploring less disruptive methods for 
reprovisioning. One promising approach employs integer programming to determine which flows are routed in the 
existing SAN, and which portions of the existing SAN to preserve. These decisions are made with respect to the 
combined objectives of maximizing the count or volume of flow routed in the existing SAN, and minimizing the 
cost of SAN disruptions. For each flow that is not routed through the existing SAN, the integer program also 
chooses the ports through which that flow exits and reenters the existing SAN. Flowmerge or Quickbuilder can 
then be applied to build a new SAN, using each flow's exit and reentry port as its hosts and devices in the new 
problem. The final step is to combine the new SAN with the preserved portions of the existing SAN. While 



integer programming was not a scalable approach for the SAN design problem, the integer program used in this 
approach has considerably fewer decision variables and thus a much smaller search space. Preliminary 
experiments suggest that this approach can produce less disruptive re-designs in quite reasonable running times. 
 
 

8 The HP SAN Designer 
Thanks to the leadership and efforts of N3SO, Appia is now the core design engine for HP SAN Designer, a 
software tool for the HP consulting, support and sales force in storage. Version 1.0 of the HP SAN Designer was 
released in January 2003.  

HP SAN Designer provides HP storage professionals with an assisted way to create, check, display, and report the 
design of storage area networks.  

It provides a graphical user interface (implemented using third party software), through which users can invoke 
the Appia algorithms for designing and reprovisioning SAN fabrics. In doing so, they can specify their desired 
level of reliability, and can select the types fabric elements from which the algorithms can choose. The interface 
also allows users to run a validation algorithm, also developed at HP Labs, to determine whether a SAN fabric 
meets the performance requirements and is physically buildable. Moreover, it allows them to manually design and 
modify SAN fabrics. This interactive environment allows the user to combine the results of the algorithms with 
their own design preferences, and quickly explore the implications of many different input scenarios. Other 
features of HP SAN Designer include detailed reporting of a SAN's bill of materials, and automated checking 
against user-specified conformance rules, such as restrictions on numbers of hops or inter-switch links. 

In its second release, planned for August of 2003, HP SAN Designer will be integrated into N3SO's SANExpert 
architecture. SANExpert is a common framework for a suite of tools for analysis, diagnostics, and design of SAN 
environments. The integration of HP SAN Designer into SANExpert will achieve several important goals. First, 
because SANExpert includes a Visio-based editor to allow visual display and manual editing of SANs, HP SAN 
Designer's current dependency on third party software will be eliminated in the second release, thus reducing 
licensing costs and enabling broader distribution within HP. Second, by providing a centralized architecture 
through which all of N3SO's SAN tools can communicate, SANExpert will significantly simplify the lives of the 
storage field. Many other valuable tools will be included in SANExpert, such as: SANDiff, a troubleshooting tool 
that compares snapshots of a SAN configuration at two different points in time; SANValidate, an engine to check 
a design against a database of interoperability rules; and SANEditor, the Visio-based graphical interface. 

Though it is still too soon to assess the true value of the HP SAN Designer, early reports make us optimistic that it 
will be a significant asset to the storage field. Beta-testers felt that the tool would save them valuable time in the 
SAN design process, improve the quality of their designs, and improve the customer experience overall. As just 
one example of what the tool can do, a senior HP SAN architect reported it "invaluable in ... helping to design 
new SANs [and] also to double-check existing designs." One test case with 600 nodes had taken a week to 
generate by hand; the tool was able to produce a comparable solution in less than a day - even during the beta test. 
For the designer, the big benefits he emphasized were (1) being able to check a design for correctness, and (2) to 
explore multiple "what if" scenarios – "For example, I can now try out the differences between using director 
class switches versus all small switches, to see which would make the best configuration for the customer's 
current and future needs. Without the tool, only one design is going to be produced for the customer because of 
the time constraint." Our hope is that as more SAN designers use the tool, we will see further evidence of these 
and other benefits that the HP SAN Designer brings to the SAN design process.  
 

9 Future work 
We are fortunate enough to have a steady stream of helpful feedback from the HP San Designer user group, and 
we are actively pursuing several directions of future work based upon their suggestions. Most importantly, we are 
adapting our algorithms to accommodate the interoperability constraints between different vendors’ devices. We 
are also working to understand what extensions - if any - are required to apply Appia for the design of Ethernet 



SANs and even LANs. A third area of exploration is the design of solutions that provide “slack,” to allow graceful 
growth as requirements evolve. Finally, we plan to extend our algorithms to apply to the design of geographically 
distributed SANs.  
 

10 Conclusions 
The HP SAN Designer, using Appia algorithms, produces high quality SAN designs. Those designs are quite 
close to the optimal ones, in cases where we can evaluate them directly, and are several times less expensive than 
some manual designs we have seen, where over-provisioning by a factor of three “just to be safe” is a common 
approach.  

While having cost-effective designs are desirable, it is even more critical to SAN designers that Appia designs can 
be shown to be correct. The value of reducing human error is extremely high in the complex, mission- and 
business-critical environments for which SAN design is done. 

In summary, we feel that Appia and the HP SAN Designer solve a key, hard problem in storage systems -- and 
one that is only going to grow in importance as the number, scale, and complexity of the SAN-based storage 
solutions grows. 
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