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In a service-oriented, utility-computing, Grid-like world, service providers will execute jobs on behalf of their clients on
systems rented from resource providers. This poses many challenges to the service provider, such as choosing which jobs to
admit, when to run them, whether to execute them on one system or many, and how many resources to rent. To complicate
matters, the service provider may experience resource uncertainty—an inability to get the resources it needs or expects.
The result will be sub-optimal choices of which jobs to accept and when to run them, and the service provider may have to
pay penalties to its clients. Using an economics-based approach, we have developed scheduling policies that systematically
address these problems. We show that the new policies deliver significantly more profit (or added value) than ones oblivious
to such concerns.

1 Introduction
Consider the situation of a service provider that offers job-
based services to its clients, which can be commercial
clients, scientific partners, or other entities. Such service
providers are likely to become more prevalent as the Grid
matures, and as service-oriented computing becomes more
widely deployed in the commercial world.

The results delivered by a job have value to the client.
This is simple to describe in an economics-based approach:
clients express the value of their jobs as the price they will
pay to have them run, and the gap between this price and
the cost to run the job is simply the job’s profit to the ser-
vice provider. The goal of the service provider becomes to
maximize its profit rate, its net return per unit time, mod-
ulo concerns such as maintaining adequate quality of ser-
vice, user satisfaction, and other intangibles.1 It seems self-
evident that profit is a valid metric in the commercial world;
we also believe that it is useful in academic and scientific
circles because it offers a clear, numerical measure for the
amount of net value added by a service.

It is helpful to contrast this job-based service with one
based on resource rentals, in which the client runs an ap-
plication themselves, leaving few degrees of freedom to the

1In other work, we are exploring how best to bind additional metrics of
this type into the service price; we also defer questions of price-setting in
the face of competition between service providers, observing that this only
increases the incentive to make efficient use of resources.
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Figure 1. Problem overview. The relationship
between clients, service providers, and resource
providers.

resource-provider service. The higher-level service we de-
scribe here adds value by relieving a client of a great deal
of work (e.g., acquiring, setting up, and executing software,
establishing a scalable environment, fault-tolerance, and so
on), allows the service provider to charge a fair price for its
expertise, and leaves it with more freedom in making deci-
sions, such as which jobs to run, when to run them, and
whether to run them on one resource or many (the job’s
shape). The result can be economies of scale and expertise,
as multiple clients’ jobs are mapped onto the same service
infrastructure, and costs such as expensive software licences
can be amortized across multiple users.

Clients describe how much timely delivery of results
matters to them by providing a value (price) profile as a
utility function of the form shown in Figure 1. A common
form is a fixed value (price) up to a specified time, after



which the value declines linearly for late delivery until a
fixed, bounded penalty is reached. When a job finishes, and
its results are handed back to its client, the price of the job is
the value specified at that moment by the job’s utility func-
tion.

1.1 Resource rental and uncertainty
Executing jobs has costs as well as rewards: processors and
other resources cost money, too. Because the amount of
work it receives will vary, the service provider can reduce
its risk by renting the resources it needs from a resource
provider, rather than owning them.

To allow service providers to decide whether to accept
work, a resource provider will offer predictions of how
many resources it will have available when, using a set of
tuples of the form � start-time, duration, resources, price � .

Because resource providers also need to make money,
they will try to maximize the return they receive on the
fixed assets they own. For example, a resource provider
might over-book resources if demand is uncertain; or a ser-
vice provider might make it an offer it cannot refuse for
resources that have already been promised to another; or it
might suffer equipment failures, and have to prioritize its
service-provider clients’ demands.

One result is uncertainty in resource availability for the
service provider, which may expose it to the risk of accept-
ing more work than can be handled, and having to pay out
penalties for delay or non-performance. What is a service
provider to do? We believe that taking account of the po-
tential risk and uncertainty is better than pretending it does
not exist.

Assuming that sufficient history has built up to allow the
accuracy of the resource provider’s estimates to be charac-
terized and modeled, we show how the service provider can
make use of this information in its scheduling process to
make informed tradeoffs between risk and return.

1.2 Contributions
The main contributions of this work are the description
and evaluation of a new family of profit-based scheduling
and admission control algorithms for higher-level service
providers that (1) explicitly address the cost of renting re-
sources; (2) handle variable-shaped jobs (ones that can be
run on one or more processors) that scale imperfectly; and
(3) explicitly address resource-availability uncertainty.

The new algorithms are compared with previously-
proposed approaches, and evaluated across a range of op-
erating conditions: load, resource price and quantity, utility
function shape (client impatience), and resource uncertainty
level. Our experiments show that the new algorithms can
extract higher profit rates than the previous ones, and we
provide data to help explain why this is so.
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Figure 2. CASTEP job scale-up behavior. How
job-execution time varies as a function of molecule
type and number of processors. These experiments
were performed on a 500-node cluster of HP DL360
processors.

1.3 CASTEP
Because there is much potential variability in work such as
this, we chose to adopt the same values used by prior stud-
ies for factors such as job mix and utility-function settings.
But rather than just inventing or postulating the effects of
changing job shapes on running times, we eliminated one
source of load-based uncertainty by driving our simulations
with measurements taken from a real parallel application –
CASTEP.

CASTEP [Segall2002] is a quantum-mechanics package
that calculates bond lengths and energy levels for molec-
ular structures. The execution times of a single CASTEP
job can vary from a few minutes to many hours (see Fig-
ure 2); typically, each job is part of a larger set that explores
a molecular structure of interest. A single CASTEP job can
be scaled to run in parallel on many machines, trading off
shorter elapsed time for greater total resource usage, be-
cause of startup and communication overheads. The num-
ber of machines has to be a power of 2 for CASTEP, which
in practice bounds the number of alternate shapes that need
to be considered during admission control and scheduling.

We assume that service providers use their domain ex-
pertise to estimate the running times of jobs in advance
(e.g., from a historical database of prior runs), which in turn
helps them to predict the cost of running jobs. This is not
unreasonable: there is a great deal of literature in the field of
workload characterization; [Chiang2001, Squillante1999]
are just two examples.

Although, for simplicity, we assume a single CASTEP
service provider and a single resource provider that rents
out physical machines, our results can easily be generalized,
and we believe that our experiments are useful predictors
across a range of situations. In particular, CASTEP stands



in for a wider range than normal of such loads, because it
can be tuned to behave like many of them.

2 Related work
Our work builds most closely on two previous utility-
computing studies: Millenium [Chun2002] and RiskReward
[Irwin2004]. They both considered a similar setup to ours,
except that the service provider and resource provider roles
were merged, with a fixed-sized pool of nodes on which to
run jobs; they did not explicitly consider resource costs, re-
shapable jobs, or resource uncertainty.

The earlier of the two, Millenium, selected jobs to run by
calculating the value yieldi � RPTi for each job i, where RPT
is the remaining processing time and yield the value (price)
obtained when the job finishes. This heuristic gives priority
to jobs that generate high value per unit running time.

RiskReward extended Millenium by introducing a dis-
count rate for future rewards, reflecting the increasing risk
of making decisions that bind the service provider into the
future. With this, PV (Potential Value) becomes an estimate
of potential future income: PVi � yieldi ��� 1 � discount rate �
RPTi 	 . Similarly, an estimate was added of the penalty
caused to other jobs j by delaying them to run new job i.
The resulting delayi 
 j is the smaller of RPTi and the time
for the affected job to hit its lower penalty-bound. The
decay j term is the slope of the penalty portion of the job’s
utility function: costi � ∑n

j � 0 
 j �� i � decay j � delayi 
 j 	 . The fi-
nal FirstReward heuristic balanced potential future rewards
against potential opportunity-cost penalties by means of a
simple weighting function: rewardi � � α � PVi  � 1  α 	 �
costi 	 � RPTi.

The utility functions used by FirstReward assume that
the job’s value stays constant over its normal running time,
and starts to decay immediately thereafter. Although we
implemented support for arbitrary straight-line-segment,
monotonic-decreasing utility-functions, we chose to model
clients that defined the utility function independently of the
job’s running time, on the grounds that value to the clients is
probably more affected by what they will do with the results
than it is by the running time – which they might not even
know in advance. This independence allowed our scheduler
to take advantage of the job’s scale-up function, and run it
on more processors in parallel if that made sense. This is
an extension of prior work: [Irwin2004] looked only at jobs
that ran on a single processor.

Both Millenium and RiskReward allowed jobs to be pre-
empted, although Millenium only allowed each job to be
preempted once, and found little benefit unless the late-
delivery penalty increased rapidly. We chose not to allow
preemption in our experiments, because of how hard it is
to implement in a gang-scheduled multi-processor context
without application-level modifications.

Space precludes more than a cursory mention of some
other related topics:

� Alpha OS [Clark1993] handled time-varying utility
functions; [Chen1996e] discussed how to do processor
scheduling for them; [Lee1999b] looked at tradeoffs
between multiple applications with multiple utility-
dimensions; and [Petrou2004] described using utility
functions to allow speculative execution of tasks.

� Libra [Sherwani2004] is a scheduler built on top of a
proportional-share load balancer that required users to
estimate running time, a target deadline, and the value
for a job; it did not support time-varying utility func-
tions.

� The MUSCLE scheduler [He2004] handles variable-
shape (“moldable”) jobs with soft deadlines, and
emphasizes efficient bin-packing and load-balancing
across multiple resource clusters rather than value,
risk, or uncertainty management. The techniques it
uses complement ours, and might improve our job-
placement heuristics.

� Scheduling is a well-developed field of study, both in-
side and outside computer science, and we don’t have
space here to do it justice. One relevant, representa-
tive sample may help to give a flavor of the state of
the art: [Sun2004] looks at scheduling work (jobs) in a
bounded-capacity factory (service provider) that is de-
pendent on multiple suppliers for its parts (resources).

[Irwin2004] has a good survey of other relevant work.

3 Our approach
As described above, we model a service provider that runs
a stream of jobs on behalf of a set of clients. Each job has
associated with it a utility function; we assume that the util-
ity value represents the price that the client is willing to pay.
Resources to run the jobs are obtained from a separate re-
source provider.

3.1 Jobs
When it is offered a job, the service provider first executes
an admission control algorithm, which decides whether it
should accept the job; if it decides that the likely profit will
decrease, it rejects the job, and no further action is taken. If
the admission control algorithm accepts the job, it is placed
into a work queue, from which it is selected at some future
time by a job scheduler.

The normal way for an accepted job to leave the system
is for it to be run to completion, at which point the service
provider is credited with the current value of the job’s utility
function. We chose to insist that all accepted jobs be com-
pleted, regardless of the cost; other schemes are possible.



3.2 Resources
Resources to run the jobs are obtained from a separate re-
source provider, who offers predictions of the number of re-
sources likely to be available at different times in the future,
and their price. We assume the availability of an uncertainty
estimator, expressed as a probability distribution of actual
resource availability associated with each prediction from
the resource provider. This estimator could be supplied by
the resource provider, or learned (the hard way) by a service
provider.

3.3 Scheduling
The scheduling problem a service provider faces is NP-
hard, and only heuristic solutions are practical for large-
scale systems. Such solutions (including ours) typically
have two parts: an admission policy, which selects which
jobs to accept, and a scheduling policy, which determines
the order those jobs will be executed in.

The job scheduler maintains a preferred schedule, based
on its estimates of resource availability, and attempts to ex-
ecute that. The scheduler is invoked whenever a job ar-
rives, a job completes, or the number of available resources
changes; it may choose to run a job, or decide that it cannot
do so yet. Preferred-schedule design is complicated by the
opportunity to reshape a job, trading off more processors in
order to get faster job completion at higher cost.

When the scheduler does decide to run a job, it requests
resources from the resource provider; if they are available,
the job is started and run to completion – resources are
not preempted. If sufficient resources are not available, the
scheduler can see if the preferred job can be reshaped (e.g.,
by running it on smaller number of machines), or it can see
if it has another, smaller, job ready to run, or it may do these
in the reverse order. The process repeats until the scheduler
has no more jobs that can be run.

In this paper we examine the behavior of several sched-
ulers:

1. longest-job first (LJF) always runs jobs on one proces-
sor, and sorts the jobs in order of decreasing predicted
run time, in an attempt to reduce the number of missed
deadlines.

2. shortest-job first (SJF) always uses a shape with as
many processors as it can (up to the maximum it can
scale-up to), and then sorts jobs in order of increasing
predicted run time, in order to maximize job through-
put.

3. FirstPrice-reshape is our shape-adjusting refinement
of FirstPrice [Chun2002]. It considers all possible job
shapes, not just one, and sorts jobs based on their pre-
dicted value � running time (i.e., ignoring resource-
rental costs).

4. FirstReward-reshape is our shape-adjusting refine-
ment of FirstReward [Irwin2004].

5. FirstProfit: a new scheduler that selects the shape of
jobs in order to maximize the per-job profit for each
job independently, and sorts jobs by profit alone.

6. FirstOpportunity: a new scheduler that examines the
effect of running a job on the others in the queue. It
builds a new schedule for the entire workload by trying
each possible job in turn (picking only the most prof-
itable standalone shape), and then using FirstProfit to
generate a schedule for the remaining jobs. It then se-
lects the job that generates the schedule with the high-
est total profit.

7. FirstOpportunityRate: like FirstOpportunity, but it se-
lects the job that would produce the highest aggregate
profit � the total schedule length.

3.4 Admission control
The admission control algorithm is responsible for deter-
mining whether it will be profitable for the service provider
to accept a job. Essentially, it is trying to decide if the net
increase in profit is (probably going to be) positive, at an
appropriate level of risk.

Our early experiments showed that simply accepting all
jobs did poorly under overload: admission control is a ne-
cessity. We then evaluated schedulers and admission control
algorithms independently, fixing the latter as we varied the
former, but found that the decisions made by admission con-
trol and the scheduler sometimes conflicted, so we switched
to using the same scheduler in the admission-control algo-
rithm as we used for job sequencing.

The most thorough way of doing admission control is to
compute new job schedules that include the new job (one
for each of its possible shapes), add in the existing schedule
(without the new job), and then select the most rewarding
schedule from the resulting set. Only if the new job is in
that schedule should the job be admitted; this takes into ac-
count any effects it may have on the already-accepted jobs.
This is exactly the approach taken by our PositiveOpportu-
nity admission-control algorithm, which we used for all the
experiments we report on here.

Compared to the cost of running the jobs, the execution
time for the admission control algorithm is small, even with
the shape variants, with the exception of the Opportunity-
based schedulers when the queue lengths get large.

The metric used for “rewarding” varies by scheduler.
For FirstPrice and FirstReward, it is yield (value)-rate and
rewardi respectively; for SJF, LJF, FirstProfit, and FirstOp-
portunity it is profit; for FirstOpportunityRate it is profit
divided by schedule duration.



3.5 Factoring in resource-uncertainty
The resource provider offers the service provider predic-
tions of when resources will be available and their price.
As mentioned above, these predictions may be inaccurate,
and so we assume that an estimate of their accuracy can be
built up (e.g., by aggregating historical information). For
simplicity, and without losing generality, we used a normal
distribution to model the estimator, with mean equal to the
resource provider’s prediction; supporting other models is a
trivial change.

There are two parameters to consider: (1) the amount of
uncertainty (how inaccurate are the resource-provider’s es-
timates); and (2) how much risk a service provider is will-
ing to take, which we express as a bound on the expected
probability that a bad outcome might happen. For example,
10% risk factor means a desire that a positive outcome is
expected to occur at least 90% of the time.

Our scheduling and admission control policies are ex-
tended to factor in risk and resource-uncertainty. When-
ever a job is considered for admission, the service provider
computes a risk assessment by using the predicted resource
availability, and a job is admitted only if the risk of the
schedule associated with it being profitable is lower than
a set threshold. A similar approach is used for scheduling.
When building a schedule, the service provider will not as-
sume it can use resources that will generate a higher risk
than it is willing to tolerate.

The result is that a service provider can select a maxi-
mum risk it is willing to take, and make decisions that ac-
cord with this. This approach allows the service provider
to couple its admission-control process to its likely access
to resources, even in the face of uncertainty. This simple
policy is both easy to apply and quite powerful, as we show
below.

4 Experimental setting
We studied the different schedulers and admission control
policies under different workloads and resource availabil-
ity profiles by building a simulator. This section describes
the experimental setup we used, and the default parameters
used in our experiments. The next section presents the re-
sults we obtained.

To allow comparison with prior work, we modeled our
test workloads on the ones used by Millenium [Chun2002]
and RiskReward [Irwin2004]: a mixture of high-value and
low-value jobs, each with a mixture of steep and shallow
late-delivery penalties expressed as linear decay rates in
value to fixed lower bounds. Not all offered jobs could
be executed profitably with the cost, computation time, and
value settings used, even if the service provider was other-
wise idle.

Inter-arrival time for jobs followed an exponential distri-
bution. Jobs were split into two utility classes, with 20%

Table 1. Simulator parameter-settings. Our cur-
rency units are called florins. With these settings,
a mean inter-arrival time of 0.15 hours generates a
potentially-profitable load for approximately twice the
available resources.

Parameter Default value
Simulation length 200 jobs

Mean job inter-arrival time 0.15 hours, exponential
Mean job size 7 processor-hours

Job shape 1–5 processors
Resources available 10 processors

Resource uncertainty none (in processors)
Mean low value job 48 florins

Mean shallow decay rate 3.7 florins/hour
Penalty value bound –48 florins

Value skew (low:high) 3 (ratio)
Decay skew (shallow:steep) 5 (ratio)

Resource price 3 florins/hour

having high value, and the rest low value; the value asso-
ciated with each class was normally distributed around the
mean with standard deviation 0.2 times the mean. Follow-
ing [Irwin2004], the ratio of these means is called value
skew. Our utility functions have set value-decay rates,
which for convenience are given positive values to repre-
sent the value lost per unit time. Ratios of decay rates be-
tween two job populations are called decay skews, again fol-
lowing [Irwin2004]. Unlike [Chun2002] and [Irwin2004],
our decays started immediately, at submission time, to bet-
ter model the expected behavior of clients who do not have
good estimates of job running times. [Irwin2004] explains
how these synthetic traces correlate to real workloads.

To handle variable job shapes, we modeled the job
scale-up behavior using Amdahl’s law [Amdahl1967,
Kleinrock1992].2 While our simulator can handle work-
loads composed of jobs that have different scale-ups, we
chose to use the serial fraction derived from our experimen-
tal measurements of CASTEP jobs on our cluster: 80% of
the computation was parallelizable, 20% serial.

Execution time in our simulator setup for the several
hundred runs we needed imposed a few restrictions on us.
To fit within our own resource envelope, we modeled a 10-
processor resource pool, and 200 jobs per run. We took care
to look only at steady-state performance: e.g., percentage
utilization data excludes the “emptying” phase, where no

2Amdahl’s law states that if β is the serial fraction, and N the number
of parallel nodes, then speedup � 1 ��� β ��� 1 � β ��� N � .
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Figure 3. The effect of changing load, with no resource uncertainty. (a) utilization, the portion of the available
resources that are used; (b) the percentage of offered jobs that are accepted by the admission-control algorithm; (c) the
average job size (number of processors); (d) percentage of the predicted profit that was realized; (e) the profit rate; and
(f) standard deviation of the profit rate. Larger inter-arrival times correspond to lower loads.



more jobs are arriving. All graphs present averages over 10
runs. The default parameter-settings for our runs are shown
in Table 1.

5 Results: scheduling with accurate
information

We now present simulation results for the scheduling and
admission algorithms described above. We begin by ex-
ploring how things worked in the absence of resource un-
certainty; the next section presents results that include it.

5.1 Varying the offered load
Figure 3 shows the results of running different schedulers
as the inter-arrival time (load) changes. As expected, most
schedulers see close to full resource utilization (about 95%)
at high loads (Figure 3a),3 and the percentage of jobs ac-
cepted also declines as the load increases (Figure 3b) from
a maximum of about 70%, which reflects the fraction of
the offered jobs in this workload that can be run profitably.
FirstReward and FirstPrice do not consider resource costs,
so they accept more jobs at low load, even if they are not
profitable.

The graph of the average number of processors used by a
job (job shape) as a function of load (Figure 3c) shows that
the new profit-based schedulers (FirstProfit and FirstOppor-
tunity) consistently choose roughly half as many processors
per job as the cost-oblivious schedulers – less than all except
LJF, which is forced to use only one processor; FirstOppor-
tunityRate uses more resources, in order to get more profit
per unit time.

Figure 3d shows how well the admission-control algo-
rithm estimates the profit for the jobs it admits. FirstOppor-
tunity and FirstOpportunityRate are the best because they
take account of the new job on the already-accepted ones;
LJF shows wide variation in behavior.

Figure 3e shows that higher loads increase the profit rate,
as schedulers have more jobs to choose from. The new
profit-aware schedulers do generally better, with FirstOp-
portunityRate performing better, since it is more selective
in accepting high value jobs (Figure 3b), and more efficient
in optimizing for profit-rate.

Figure 3f shows the standard deviation of the profit
rate. At high loads and profit rates the variation increases.
FirstReward and FirstPrice had profit rates coming close to
FirstProfit, but they exhibit higher variation in the profit.

5.2 Varying user impatience: the value-decay rate
We can approximate the effect of impatient users by increas-
ing the rate at which job values decline over time. Figure 4

3Resource utilization here means the fraction of rentable resources that
were rented, rather than the percentage of the resources rented that were
successfully exploited by the application: while the service provider is
renting a resource, we assume that it is fully used.

shows the results: as the decay-rate increases, the number
of resources per job increases as the schedulers try to fin-
ish work more quickly, and the profit rate drops, as jobs
become harder to run profitably. This is reflected in the
utilization (not shown), which decreases to close to 0 for
decays larger than 100 florins/hour from more than 95% for
decays smaller than 10 florins/hour.

The accuracy of profit prediction ((Figure 4b) is consis-
tent with previous observations. The better predictions for
high decay rates occur because of the low accepted load,
which results in fewer changes to scheduling decisions that
have already been made.

In almost all cases, the new schedulers outperform the
older ones (Figure 4c), with FirstOpportunity and FirstOp-
portunityRate having better performance. The standard de-
viation of the profit rate (Figure 4d) shows erratic behavior,
even when determined from 10 runs. The new schedulers
tend to do slightly better than the others.

5.3 Varying resource availability
The service provider always fully uses the resources it rents;
Figure 5c shows that all schedulers do better when there
are more of them to rent, as more jobs can be run success-
fully, but that the new schedulers generally outperform the
others. Being both value- and cost-conscious, the profit-
based schedulers find profitable operating regimes. The
profit based ones stabilize to use around 2.5 processors per
job, while the profit-rate one uses more (around 4.5) as it
prefers high value jobs with shorter running time. At high
resource counts, the system is under-loaded and there is no
more profitable work to accept, so the lines flatten out. We
see the same variability in the profit rate (Figure 5d), as in
previous experiments.

As the number of resources decreases, the effective load
increases, and thus the accuracy of profit prediction declines
(Figure 5b), as expected.

5.4 Varying resource price
Figure 6 shows how profitability and average job shape
change when the rental price per processor hour is var-
ied. As the price increases, the cost-aware schedulers use
smaller job shapes, and consistently deliver greater prof-
itability than the alternatives. The other schedulers do not
adapt the job shapes, as they do not consider price in their
decisions.

The profit rate (Figure 6c) curves show a rather sur-
prising trend: profit rate sometimes decreases as resources
get cheaper. This behavior results from admission-control
algorithms that base decisions only on profit, rather than
on profit-rate (i.e., that do not take the makespan of the
load into account). To confirm this hypothesis, look at the
line for FirstOpportunityRate, which optimizes explicitly
for profit rate. This does not suffer this behavior at low
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Figure 4. The effect of user impatience, with no resource uncertainty. (a) the average job size (number of proces-
sors); (b) percentage of the predicted profit that was realized; (c) the delivered profit rate; and (d) standard deviation of
profit rate. User impatience is expressed as a value-decay or penalty rate in florins/hour.

resource prices, although it seems to be unnecessarily pes-
simistic at high ones.

Figure 6b is consistent with previous experiments: as
prices drop, the accepted load increases, and the accuracy
of profit prediction declines. FirstPrice and FirstReward
schedulers start to operate in a negative profit regime when
the price increases to more than 8 florins/hour.

6 Results: scheduling with resource
uncertainty

The previous section described our exploration of how the
service provider algorithms operated without any resource-
availability uncertainty. This section relaxes that restric-
tion, and explores the tradeoff between risk and reward
when the service provider cannot be sure that resources

will be available. Note that with a normally-distributed
resource-availability profile, there is always a possibility
that zero resources will be available, so a completely risk-
averse admission-control algorithm would refuse to accept
any jobs.

The uncertainty-oblivious policies simply ignored any
projected variance in the resource estimate, and assumed
that its mean was the actual value. Rather generously, we al-
lowed the uncertainty-oblivious schedulers to reshape a job
if it could not fit at attempted-execution time, rather than
forcing it to be delayed until a later time.

The uncertainty-aware scheduling policy we examined
was FirstProfit, with the admission policy extended to ac-
cept jobs only if the probability of achieving the expected
profit was greater than � 1  risk 	 . It achieved this by cal-
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Figure 5. The effect of changing available resources, with no resource uncertainty. (a) the average job size
(number of processors); (b) percentage of the predicted profit that was realized; (c) the delivered profit rate; and (d)
standard deviation of profit rate.

culating the profit for a schedule, and then calculating the
probability of being able to achieve that schedule, using the
uncertainty for the resource estimates.

Figure 7a shows that the uncertainty-aware schedulers
admit fewer jobs as the resource-uncertainty increases to
reduce risk, while the others do not.

The number of resources used per job decreases slightly
as the uncertainty increases (Figure 7b), because the ab-
sence of resources forces schedulers to reshape jobs to
fewer processors than initially scheduled.

As the uncertainty increases, the profit rate decreases
(Figure 7c); interestingly, the decrease is larger for the
uncertainty-aware schedulers than for the oblivious ones.

The variance in expected profit (Figure 7d) increases
with uncertainty, and with willingness to take risks; it

is generally lower for the uncertainty-aware schedulers.
We saw cases with negative profit with the uncertainty-
oblivious schedulers at high uncertainty, but did not see this
for the uncertainty-aware ones.

In general, increasing profit rate comes with higher
profit-rate variance at higher levels of uncertainty – that is,
there is a direct trade-off between these two metrics. The
risk-aware schedulers allow this tradeoff to be made explic-
itly.

The uncertainty-aware schedulers generate better profit
rates than almost all the uncertainty-oblivious ones. The
main exception is the SJF policy, which has higher av-
erage profitability at higher resource uncertainty—but this
improvement comes with greater profit variability. We ob-
served a similar phenomenon with the LJF scheduler, which
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Figure 6. The effect of changing resource prices, with no resource uncertainty. (a) the average job size (number
of processors); (b) percentage of the predicted profit that was realized; (c) the delivered profit rate; and (d) standard
deviation of profit rate.

does poorly at the load used for Figure 7, but better at some
other loads.

Setting the acceptable-risk to too low a level has the ef-
fect of making the service provider too conservative. We
notice this in the case of the FirstProfit(5%) scheduler: the
profit rate decreases significantly as uncertainty increases,
though the benefit is that the profit variability is almost zero.

7 Conclusions
We investigated the job-scheduling design space for service
providers that rent resources rather than own them, and ex-
tended this to the case with resource uncertainty, with par-
ticular attention to profit-aware schedulers. We studied how
load, user impatience, number of resources, price, and re-
source uncertainty influence the service provider’s profit

and showed that the new profit-aware schedulers outper-
form previous ones across a wide range of conditions.

Based on our experiments, we make the following addi-
tional observations:

� Admission control is crucial in an over-subscribed en-
vironment, and matching the admission-control policy
to the scheduling policy is vitally important. This is a
particular case of the need for accurate predictions of
scheduling behavior when maximizing profitability.

� In this environment, SJF did significantly better than
FirstPrice and FirstReward.

� Picking the job-shape causes additional complexity,
but this can be handled by reasonably simple sched-
uler extensions.
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Figure 7. Scheduler decisions when resource uncertainty varies. (a) percentage of jobs admitted; (b) average
number of processors per job; (c) average profit rate; and (d) observed variance in profit rate. In all graphs, uncertainty
is measured as the standard deviation of the resource-availability prediction, and each point is derived from 10 runs.

� Not only did the uncertainty-aware admission control
and scheduler algorithms do well in the face of re-
source uncertainty, but they did no worse than the
uncertainty-oblivious alternatives in its absence.

� Our new algorithms offer a controllable tradeoff be-
tween risk and potential reward – and in the uncer-
tainty in the size of that reward.

� A larger profit can be obtained at the cost of greater
profit uncertainty, but accepting a small amount of risk
gives access to most of the available profit.

Our results demonstrate clear benefits for profit-aware
schedulers, including realistic situations where profit was
double that obtained using previously-published algo-
rithms. Although FirstOpportunity and FirstOpportuni-

tyRate performed slightly better than FirstProfit, we believe
that the simplicity and low running costs of the latter prob-
ably makes it a preferable choice.

In the future, we would like to experiment with non-
technical aspects of the economics-based approach, such as
determining how to help customers express utility functions
easily. We would also like to explore alternative ways to
describe and manage risk. For example, it might be benefi-
cial to accept a higher risk for high-profit jobs, and to sup-
port resource providers whose resource-price is a function
of the level of certainty they offer. It would also be inter-
esting to consider how best to extend these ideas to handle
load-related uncertainty, especially if there was partial pre-
dictability, such as a cyclic load [Rolia2004].
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