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Utility functions are used by clients of a service to commu-
nicate the value of a piece of work and other QoS aspects
such as its timely completion. However, utility functions on
individual work items do not capture how important it is
to complete all or part of a batch of items; for this pur-
pose, a higher-level construct is required. We propose a
multi-job aggregate-utility function, and show how a ser-
vice provider that executes jobs on rented resources can use
it to drive admission control and job scheduling decisions.
Using a profit-seeking approach to its policies, we find that
the service provider can cope gracefully with client over-
load and varying resource availability. The result is signif-
icantly greater value delivered to clients, and higher profit
(net value) generated for the service provider.

1 Introduction
We have a colleague who often runs 100,000 jobs over a
weekend on a shared compute cluster in order to perform an
experiment. Each job takes a few minutes to run and pro-
duces one data point on a graph. The graph is nearly useless
if too few data points have been obtained by Monday morn-
ing, but completing 90% is almost as good as completing
all of them. No particular job is more important than any
other – it is the aggregate set of results that counts.

Computer-graphics film animators often compete with
each other for access to a compute farm on which they run
multi-hour rendering jobs overnight [3]. For any particu-
lar animator, getting a particular image back the following
morning has some benefit, and having more images ren-
dered is better – but sometimes the majority of the sequence
needs to complete for any of it to be useful. Some frames
are considerably more expensive to render than others. No
particular frame is more important than its peers – it is the
overall effect that matters.

Outsourced business services often have service level
agreements (SLAs) or contracts that include penalties for
poor performance: if the response time is too high, for too
many transactions, the service provider will earn less, and
may even have to pay out more than it takes in. No individ-
ual transaction is any more important than any other – the
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Figure 1. Problem overview. The relationship
between clients, service providers, and resource
providers.

percentage of transactions that violate the bounds is what is
important.

Simple per-job or per-work-item information does not
capture the true intent of the client in these examples, leav-
ing the service provider to do the best it can, but risking
unhappy clients, under-utilized services, or both. What is
needed is additional control that can express the client’s
desires while not unduly constraining the service provider.
This paper presents such a control, and evaluates its behav-
ior.

We focus our study by considering the concrete example
of a job-execution service provider that runs batch jobs on
behalf of its clients, who can be commercial clients, scien-
tific partners, or other entities.



1.1 Contributions
The primary contributions of this paper are to:

� introduce aggregate utility functions, which are used
in contracts to let clients specify the overall value of
completing a set of work, in addition to the values of
individual work items;

� present algorithms that allow a service provider to
make both per-contract and per-job admission-control
and scheduling decisions that take such aggregate util-
ity functions into account; and

� evaluate these algorithms by means of a simulation
study, in the context of a service provider that obtains
resources from an external source.

Our evaluation covers a range of operating conditions: load,
resource cost and quantity variability, per-job utility func-
tion shape, and aggregate utility function shape. Our ex-
periments show that the new algorithms consistently extract
higher utility for clients and higher profit rates for service
providers than previous approaches.

The next section introduces our model of services and
the contracts they support; section 3 describes our job exe-
cution service in greater detail; section 4 describes the re-
source provider service it uses. The evaluation portion of
the paper starts with a description of our setup in section
5 and is followed by our results in section 6. A survey of
related work and our conclusions close out the paper.

2 Services and contracts
Service-oriented computing has arrived in enterprise com-
puter systems [19]; the Grid can be viewed as its non-
commercial counterpart, and has similar momentum behind
it [13]. In such environments, large-scale functions such as
business processes are composed from separable, loosely-
coupled services that can be reused and shared. Tools and
techniques that increase the effectiveness of these environ-
ments have become important.

One immediate opportunity this environment offers is
to outsource work to specialized services, such as a job-
execution service. This outsourcing has many benefits:
clients avoid the hassles and expense of maintaining their
own data center and provisioning it for their peak load;
clients benefit from the service provider’s economies of
scale, expertise, and management; and multiple clients can
share a common infrastructure and (sometimes) expensive
software licenses, resulting in lower costs.

Like many others working in this space, we have found
that charging for services clarifies the value that such ser-
vices provide, and brings a helpful precision to the notion
of goodness, utility, and benefit.1

1We distinguish between charging for services and pricing them.

The profitability of a service is a direct measure of the
amount of value the service is adding to its environment. It
is simply the difference between the cost of running the ser-
vice and what its clients and sponsors will pay to do so. Al-
though profit is clearly a useful measure in the commercial
sphere, we believe that it offers a helpful measure of added
value in non-commercial settings, too. In both cases, it is
important to have a clear measure of how best to use lim-
ited resources, whether they be computer equipment, peo-
ple’s time, or funds. Some measure of goodness must exist
if alternate designs are to be compared, and mapping this
measure onto a numerical scale allows quantitative reason-
ing and computer-based optimizations [15].

Real money has the advantage of fungibility and external
comparability – if you do not like a service, you can spend
the money on buying it elsewhere, or on building it yourself
– but any relatively scarce “currency” has many of the same
benefits, as long as there is a way of mapping its quantity
back to a metric of interest, including all the QoS “-ilities”
that matter in a particular circumstance. As we will show,
economic mechanisms can drive the selection of algorithms
to use in a service provider in productive ways.

Payment for a service can come from many sources:
from its clients, from third parties such as advertisers, or
from sponsors such as an IT department or a government
funding agency. In this study, we use a pay-per-use model,
funded by the clients.

2.1 Contracts
In a service-oriented world, clients need control over their
service provider’s behavior, and service providers must be
able to constrain the behavior of their clients. This mutual
control is provided by means of service level agreements,
or contracts, which specify the service to be provided, its
quality and quantity levels (e.g., the load that the client can
impose), price, and penalties for non-compliance.

Too much specificity in a contract may prevent helpful
optimizations behind the scenes; too little leaves the the ser-
vice provider to second-guess the intentions and desires of
its clients, which exposes the clients to the risk of being
surprised, disappointed, or both.2

For our job-execution service example, each of our
clients negotiates a contract with the service provider to run
a single sequence of jobs. The client binds itself too, by in-
cluding a description of the contract’s workload in sufficient
detail to allow its aggregate load and value to be estimated,
but not the precise timings of when jobs will arrive, or their

Market-based mechanisms such as auctions offer one way to price goods
and services, but there are plenty of others. We concentrate here on what
to do with the information that prices provide.

2Not everything needs to be explicitly specified in a contract: anything
for which there is little risk of misunderstanding can safely be omitted.
Ascertaining what is mutually understood is itself an interesting problem.
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Figure 2. Per-job utility functions. How much value
a job delivers as a function of when it is completed.

individual sizes or values. This description includes esti-
mates of the number of jobs, their sizes, arrival rates, and
utility functions, in the form of distributions (in our case,
the distributions used by our client workload-generators).

We model well-behaved clients that submit jobs that con-
form to the contracts they negotiate; coping with malicious
clients is outside the scope of this paper. For simplicity
of exposition, each job demands only one processor; han-
dling multi-node, moldable or reshapable jobs is a relatively
straightforward extension.

2.2 Job utility functions

Each job has an associated time-varying utility function that
expresses the maximum price that the client is willing to
pay for that job to be run, and how this price decreases with
elapsed time (see Figure 2). We follow previous work in
this field [7, 14, 21], and use a simple three-part shape for
the per-job utility function; these utility functions start at
some constant value and continue there for a while; decline
at some constant rate (to reflect increasing disappointment
in a late result), and eventually reach a maximum negative
penalty. Finally, the function reaches a timeout, indicating
that the client is no longer interested in the job’s output.

We equate the value of a job with the maximum price the
client is willing to pay, and for simplicity (and greater focus
on our problem) ignore price-setting mechanisms such as
auctions. Our clients always pay their jobs’ true value.3

Once the job execution service provider accepts a job,
it will either run it and deliver its results, or it will cancel
it. If the job is not completed by its timeout, it is always
cancelled. The job value to the client equals either the job’s
utility function value at the moment that the job completes
and returns its results, or the maximum penalty if the job is
cancelled.

3Prices are likely to be lower with multiple, competing service
providers, which will in turn increase the incentive for such service
providers to operate efficiently and competitively – and their need for al-
gorithms such as the ones we discuss here.
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Figure 3. Aggregate utility functions. Some repre-
sentative functions, showing the effects of changing α
and β on the total pay-out for a contract.

2.3 Aggregate utility functions
In the absence of a higher-level contract, the service
provider is free to cherry-pick jobs, and accept only the
most profitable ones, leaving the client at risk of not get-
ting its less-profitable work done.

To prevent this behavior, the client needs to constrain
the service provider somehow. As the examples in the in-
troduction show, simple per-job metrics will not work, and
imposing binary constraints of the form “you must finish all
of these” would be sub-optimal in the presence of compe-
tition from other clients that may not be known at the time
the contract is written.

For our solution, we build on top of per-job utility func-
tions and choose the following: the overall payment for a
contract is the sum of the per-job prices multiplied by the
value of an aggregate utility function, which is a function
of an aggregate metric measured across the entire contract.
This function allows the client to express near-arbitrary con-
sequences for different aggregate behaviors in a simple way.
We believe that this mechanism is simple, powerful, easy
to communicate, captures important client concerns, and is
easy for the service provider to interpret.

The aggregate utility function could be of nearly arbi-
trary shape. To explore a range of behaviors, we picked
a family of functions that can be generated using only
two parameters: aggregate utility � αxβ for an aggregate
metric value x in the range 0–1 (see Figure 3). We call�
aggregate utility � 1 � a “bonus” when it is positive, and

a “penalty” when negative.
The parameter β is a measure of the client’s sensitivity to

the aggregate metric: when β � 0, the client is indifferent to
its value; when β � 1, the client is moderately sensitive (the
relationship is linear), and for higher values of β , the client
is increasingly sensitive. When the aggregate metric is the
fraction of jobs completed, then as β increases, the client is



expressing increasing concern about completing all of the
jobs; for β � 1, as β approaches 0, the client is expressing
increasing indifference to having the last few jobs run.

The parameter α describes the potential upside to the
service provider of good performance: for example, with
α � 1 � 4 and β � 1, the client is offering a bonus of 40% of
the sum of individual job utility values for completion of all
the jobs in a sequence (the tallest straight line in Figure 3).

The overall pay-out for a contract is calculated at its end;
we assume that payment can be deferred until then, and any
disputes can be arbitrated by a third-party auditor [2, 4].

Here, we use the fraction-of-jobs-completed as the ag-
gregate metric, but it could as easily be any such metric,
such as the average job completion time, the average start-
time delay, or even the correctness of the results.

Composite utility functions could certainly be con-
structed using more than one aggregate metric. Essentially,
they become objective functions for the service provider,
guiding its tradeoffs along different operating dimensions.
Using such functions might be an interesting way to aug-
ment the penalty clauses that are traditionally used in SLAs
to handle QoS violations for properties such as availabil-
ity, reliability, correctness, timeliness, and security – but it
remains future work.

We also believe that aggregate utility functions that span
multiple contracts would be a powerful tool to capture con-
cerns about overall customer satisfaction and most-favored
customers; such functions are also potential future work.

2.4 Using contracts in the service provider
Faced with a proposed contract from a client, a service
provider has to decide whether to accept or refuse it. Once
a contract has been accepted, the service provider is bound
to it: it cannot be cancelled, although it can effectively be
abandoned. Payment is determined by the combination of
jobs completed and the aggregate utility function.

Even in the absence of penalties for refusing contracts,
the service provider still faces a tricky question when a new
client contract arrives: is accepting the new one likely to
give it more profit than completing an already-accepted one
that it might have to abandon, or even some possible fu-
ture one? Remember that the contract details provide only
estimates of future client behavior – the details of exactly
which jobs will arrive when are unknown, for both the new
and the existing contracts.

The number of resources available to the service provider
may fluctuate with time, affecting which contracts it can
service profitably. The desirability of abandoning an ex-
isting contract is affected by both the likely cancellation
penalties for its jobs, and by what fraction of the achiev-
able aggregate-level benefits have been achieved from the
already-completed jobs: if it has nearly completed a con-
tract with a high β value, it may well be worth complet-

ing it, because much of the payout will result from only a
little more work. All these factors complicate the service
provider’s decision.

A similar problem occurs when the client submits a job:
the service provider has to decide whether to accept it or
not, bearing in mind the likely profitability of the job by
itself, its impact on other work that it has already agreed
to do, and the effect it might have on the aggregate utility
function for the contract the job is associated with – or even
other contracts, if those jobs have to be cancelled to make
way for this one.

The next section describes some of the algorithms we
use to solve these problems.

3 Job execution service
The primary metric we use to evaluate the job execution ser-
vice is the profit-rate it achieves: the difference between its
income and expenditures per unit time. Income corresponds
to the utility (value) it delivers to its clients, as measured by
what they pay; expenditures are its costs to rent processors
on which to run the jobs. In turn, client value is specified
by the combination of a contract’s per-job utilities and the
client’s aggregate utility function.

We are also interested in the total client utility achieved,
which we equate with the total value (utility) the clients pay
– i.e., the service provider’s revenue.

The job-execution service provider runs two types of ad-
mission control algorithms: one for client contracts and one
for individual jobs. It also has a scheduler that decides when
to run jobs. We discuss these algorithms in the remainder
of this section.

3.1 Contract admission control
The contract admission control algorithm determines which
client job-sequences to accept. Its purpose is to avoid long-
term service over-commitments, and to establish a binding
contract between the service provider and its client. The al-
gorithm is run whenever a new contract arrives. It first runs
a feasibility check to determine if it can accept the contract
(i.e., it will be able to get enough resources to do so), and
then a profitability check to see if it should (i.e., if its prof-
itability is likely to increase if the contract is accepted). If
the contract passes both tests, it is accepted; if not, it is de-
clined, and the client seeks service elsewhere. There is no
penalty for refusing a contract, but once accepted, it is mu-
tually binding on both parties.

The contract-feasibility check is selected from the fol-
lowing policies:

1. contract-load=oblivious: always accepts contracts.

2. contract-load=average: accepts a contract only if its
average load plus the existing average load is within



the predicted resource availability for the contract’s
duration.

3. contract-load=conservative: like average, but uses
load estimates that are 2 standard deviations above the
average, to provide some resilience to time-varying
loads.

4. contract-load=preempt-conservative: accepts a con-
tract if it passes the contract-load=conservative ad-
mission test, possibly by cancelling an overlapping
contract that would generate less total revenue.

5. contract-load=high-value-only: accepts a contract if
its expected value per hour exceeds a threshold. Set-
ting the threshold requires knowing the expected value
per hour of future contracts; however, running this al-
gorithm provides a useful upper bound on profit.

If the contract is feasible, its profitability is then checked,
using one of the following tests:

1. contract-cost=any: the cost to rent resources to exe-
cute the contract is ignored; no contract is rejected for
this reason.

2. contract-cost=variable: profitability predictions are
calculated separately for each different cost period and
added; only contracts that increase the overall profit-
rate are accepted.

In theory, multi-round negotiations could occur at the time
a contract is offered [12]. For simplicity, we just consider a
contract once, and accept or reject it as it stands: no attempt
is made to adjust the contract to make it more acceptable to
either side.

Once a contract is accepted, clients can submit jobs
against it.

3.2 Job admission control
To avoid short-term overload, the job execution service
provider also runs a job admission-control algorithm when
a new job arrives, which decides whether it should accept
individual jobs. Rejected jobs are not further considered,
although they do affect the aggregate utility metric. Note
that in our test workloads, some jobs are individually un-
profitable: even if there were no other jobs in the system,
the cost of executing them would exceed the job’s utility.

If the admission control algorithm accepts a job, it is
placed into a work queue, from which it is selected to be
run at some future time by a job scheduler (section 3.3).

In the absence of aggregate utility functions, the job ad-
mission decision is made by comparing the profit rate of a
tentative new schedule that includes the new job against the
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existing schedule that does not.4 If the new profit rate is
higher, the job is accepted.

Aggregate utility functions complicate job admission
control: it may be more profitable to run an individually-
unprofitable job than to reject it. A useful way to think about
this scenario is to consider the cost to the service provider of
not running a particular job. The lost aggregate utility may
be larger than the cost of running a non-profitable job. Our
solution is to make the job appear to be sufficiently prof-
itable for it to be accepted and run.

We capture the increased desirability of a job by con-
structing an effective job utility function for it that includes a
bias to the job’s utility, and use it in admission and schedul-
ing decisions, rather than the original utility function.

Figure 4 shows how the bias is computed, and Figure 5
provides the equivalent pseudo-code. We first determine the
current operating point (old fraction), the fraction of jobs
that would be finished if this job and all subsequent jobs
were run to completion (i.e., 1 minus the fraction of jobs
that have been rejected or cancelled so far). The bias is the
drop in the aggregate utility function from completing one
fewer job, multiplied by the expected (i.e., average) value
of a job. It is added to all of the original job utility-function
y-values to generate the effective utility function.

The effect of the bias is to assign much higher values to
jobs that would have a large effect on the aggregate utility
function if they were abandoned – for example, at an operat-
ing point near 100% for large-β functions (highly-sensitive
clients) – but not to alter the values of jobs that are at rela-
tively insensitive portions of the aggregate utility function.

As a concrete example, suppose that the contract speci-
fies 20 jobs with a mean job value of 15, and further suppose
that the service provider has already failed to finish 2 of 12

4As make-span for this calculation, we use the time to first free re-
source; using time to last job completed gave less satisfactory results.



computeEffectiveUtility(
input:

U(t) // original job utility function
f(x) // aggregate utility function
total // number of jobs in the sequence
dropped // number of jobs already abandoned
mean_value // average for all [future] jobs

output:
U’(t) // effective utility function

{
// "old_fraction" is the position on the
// aggregate-utility curve before this job
// arrived - i.e., "x" in f(x)
old_fraction = 1 - (dropped / total);

// "new_fraction" is the new position on the
// aggregate-utility curve if this job
// were to be dropped
new_fraction = 1 - ((dropped + 1) / total);

// potential is how many jobs could complete
potential = total - dropped;

// bias is how far to boost the job’s
// effective value
bias = mean_value *

( (potential * f(old_fraction))
- ((potential-1) * f(new_fraction))
- 1 );

// create the effective utility function
U’(t) = U(t) + bias;

}

Figure 5. Calculating effective utility. How effective
utility is calculated for a job.

jobs so far. When the next job arrives, the operating point
old fraction is 0.90, the new fraction is 0.85, and potential
is 18. Therefore, the bias is 15 �

�
18 � f

�
0 � 90 � � �

17 �
f

�
0 � 85 � � 1 � . If the aggregate utility function f

�
x � � 2x

(α � 2 � β � 1), then the bias is 37.5. A more sensitive ag-
gregate utility function f

�
x � � x3 generates a bias of only

25.2, because the 10% of jobs that were already missed have
pushed the operating point to a place where the aggregate
value is heavily degraded. The same f

�
x � � x3 correctly

generates a bigger bias of 41.25 when the current operating
point is 1.0 because the downside of not running even one
job is so large near the 100%-complete operating point.

The jobs’ effective utility functions are only used to help
the service provider make decisions: they are not used for
charging the client.

3.3 Job scheduling
Once a job is accepted, the service provider’s job scheduler
decides when it should be run. Since job-scheduling is NP-
hard, heuristic solutions are normally used. Our approach is
to use a first-profit-rate scheduler, which is a greedy, cost-

aware scheduler derived from first-profit [21]. The algo-
rithm sorts jobs by declining expected contribution to profit-
rate, and selects the first job to execute from the front of that
list.

The job scheduler maintains a preferred schedule of
pending jobs, and attempts to execute that schedule on the
resources available to it. The scheduler is invoked whenever
a job arrives, a job completes, or the number of available
resources changes. If the scheduler decides that a job can
be run, it selects a resource from those obtained from a re-
source provider, and assigns the first job in the schedule to
it; this procedure is repeated until the scheduler has no more
jobs that can be run or no remaining available resources.

Once a job starts running, we assume it will run to com-
pletion: it will not be preempted or aborted. To avoid get-
ting tangled up in all the issues related to managing uncer-
tainty, we deliberately assume that the job-execution time is
known in advance, and construct the schedules so that the
resource provider never needs to take away resources being
used by a running job.5

If a job’s start is delayed too long, its effective value may
become negative. The scheduler will then cancel the job.

4 Resource provider service
Much prior work has assumed that the service provider
owns the machines on which it runs its service. Besides the
obvious disadvantage of representing a static capital invest-
ment in a single service offering, this approach biases the
decisions made by the job-execution service towards maxi-
mizing the utilization of its processor nodes, even at the cost
of declining marginal utility.

We believe that there is a better way, since in a service-
oriented computing world, service providers can be clients
of other service providers. In particular, we model a job-
execution service provider that rents compute nodes from
one or more physical resource service providers, or just re-
source providers.6

Such resource rental has many benefits: the job ex-
ecution service can scale up or down its capabilities as
its business fluctuates; it does not have to be in the cap-
ital and operating-expense intensive business of running
data centers; it can benefit from competition across mul-
tiple resource providers; and it can aggregate resources
from several of them. There are disadvantages, primarily
that the number and cost of resources available to the job-

5We realize that this is a strong assumption, but it is a conscious one,
because it makes it easier to focus attention on the new results. Neverthe-
less, we believe that our results would be similar without this assumption
– just harder to interpret, and with yet more workload parameters to set.

6The resources rented could be virtual machines rather than physical
ones, as in Tycoon [17]. This represents a level of indirection that does not
affect our story, other than to add the complexity of managing potentially
dynamically-changing resource performance.
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execution service may fluctuate as a function of other ser-
vice providers’ demands on the resource provider.

Since the resource provider is not the focus of this pa-
per, we adopt a model of its behavior that is sufficient to
capture several of its salient behaviors and exercise the job-
execution service provider’s algorithms, while eliminating
what we feel is unnecessary complexity.

Our variable resource provider models changing re-
source availability by alternating between on and off modes
(see Figure 6), with more resources available in the former
than the latter, and potentially different per-hour rental costs
in the two modes. The special case of identical numbers and
costs of resources in both on and off modes is called a static
resource provider.

We found it helpful to construct different scenarios by
considering a number of ratios between the properties of on
and off periods:

� quantity-ratio: the number of resources in an on-
period divided by the number in an off-period.

� cost-ratio: the cost of a resource in an on-period di-
vided by the cost in an off-period – we expect that an
excess of resources might cause the resource provider
to lower its cpu-hour cost in times of plenty.

� on-ratio: the length of on-periods divided by the sum
of on- and off-periods.

We always use equal-length on and off times (on-ratio =
0.5); the static provider has all other ratios equal to 1.0.

The resource provider offers accurate descriptions of
how many resources it will have available at a specific time,
using a set of tuples of the form � start-time, duration,
resource-quantity, cost � . Prior work [21] has shown how
to handle inaccurate resource estimates in a similar context
to ours, so we omit that feature here.

We restrict this analysis to homogeneous processor re-
sources; the techniques we describe can readily be general-
ized to handle multiple resource types.

Finally, we note that the resource provider’s revenue is
the same as the job-execution service provider’s cost.

Table 1. Default simulator parameter-settings. Our
currency units are called florins. The notation distri-
bution(x, y) means a distribution of the given type with
a mean of x and a standard deviation of y.

Parameter Default value
Simulation length 1000 hours

Runs per data point 10

Client inter-arrival time exponential(1.0) hours
Client (contract) duration Gamma(100.0, 25.0) hours

Aggregate-utility α , β 1.0, 0.0

Job inter-arrival time exponential(0.15) hours
Job length Gamma(1.0, 0.25) cpu-hours

Low-value job value Gamma(12, 2.4) florins
High-value job value Gamma(36, 7.2) florins

Low:high-value clients ratio 80:20
Delay before value decays 1.5 � job-length

Mean decay rate (steep) to 0 value in 1 job-length
Mean decay rate (shallow) to 0 value in 5 job-lengths
Shallow:steep clients ratio 80:20

Max penalty value � � (job-value)
Job-cancellation penalty � max-penalty-value

Resources available 20 processors
Resource cost 10 florins/hour

On- and off-period duration 125 hours each
Quantity- and cost-ratio 1.0 (static)

5 Experimental setting
We studied our job-execution service provider’s behav-
ior across a wide range of operating conditions, varying
the offered workload and contract conditions, the policies
and algorithms used by the service provider, and resource-
provider behavior. This section describes our experimental
setup, and the default parameters used in our experiments.
The next section presents the results we obtained.

We started by constructing a system with a set of inde-
pendent Java processes to act as clients, a service provider
and a resource provider. This system is able to perform real
job-execution, for a set of “fake” jobs. That code base forms
the basis of a simulator, which mimics the behavior of the
real system, and was used for all the results reported here.

In our experiments we use a single job-execution service
provider, renting computers from a single resource provider,
as this is sufficient to stress our algorithms.

We begin with a set of exploratory runs that are designed
to tease out the behavior of the system under relatively
straightforward conditions, before proceeding to more chal-
lenging situations. This first set of experiments establishes



a baseline operating environment with the static resource
provider: our goal is to set up a workload that has a reason-
able profit margin (about 50%), operating at or near satu-
ration on the available resources, while still rejecting some
contracts and individual jobs. The first set of results we re-
port present this behavior (see Section 6.1).

To allow comparison with prior work, we model our test
workloads on the ones used by Millennium [7], RiskRe-
ward [14], and Popovici [21]. Each job utility function has
a fixed value-decay rate (see Figure 2) that reduces the job’s
value from its initial value to its maximum penalty value;
the decay starts at 1.5 times the job’s running time. We
use a mixture of high and low-value jobs and both shal-
low and steep value-decay rates. RiskReward[14] discusses
how these synthetic loads relate to real workloads. Not all
offered jobs can be executed profitably with the cost, com-
putation time, and value settings used, even if the service
provider is otherwise idle.

The default parameter-settings for our runs are shown in
Table 1. Each client generates one sequence of jobs with
an exponentially-distributed inter-arrival time. Such clients
are created at exponentially-distributed inter-arrival times
throughout the run, with a contract duration designed so that
contracts may span on/off boundaries. Contract negotiation
is simulated as occurring at the time a client is created; the
client’s first job is submitted one job inter-arrival time later.

We used Gamma distributions to generate bounded val-
ues such as job length or utility values.7

Unless otherwise noted, all graphs present averages over
10 runs. We take care to avoid end-effects as much as pos-
sible. In particular, we run all jobs to completion, make the
experiment duration much larger than the average job dura-
tion, and undo the effects of jobs that are incomplete at the
end of a run.

We found that the execution times for the algorithms of
the job execution service provider are small compared to the
time for running the jobs.

6 Results
We now present our simulation results. We begin by estab-
lishing the baseline behavior for our system in the absence
of aggregate utility-aware clients, and then add them, fol-
lowed by varying the behavior of the resource provider.

6.1 Baseline behavior
The policies used by the baseline service provider
are contract-load=oblivious, and contract-cost=any for

7Gamma distributions are chosen with parameters such that they be-
have roughly like normal distributions but with the attractive property that
they do not generate negative values. Using a normal distribution and sup-
pressing such values would result in a new, not-quite-normal distribution
with a slightly different mean than intended.
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Figure 7. Indifferent clients and a static resource
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sus offered load for the baseline service provider.



contract-admission and first-profit-rate for job admission
control and scheduling.

Figure 7 shows how the service provider and clients be-
have in the absence of an aggregate utility function (or,
more strictly, if the aggregate utility function is “indiffer-
ence”), and with a static resource provider.

As the offered load increases, the overall utility deliv-
ered to both clients and service providers increases. The
service provider costs (which equal resource-provider rev-
enues) stop growing significantly at around 60 jobs/hour, at
the same point that resource utilization saturates.

Revenue and profit also stop growing at resource satu-
ration. The service provider finds and runs more higher-
valued (and hence more profitable) jobs at higher loads, as
shown by the breakdown of cpus assigned to jobs of differ-
ent values (Figure 7(b)). However, accepting higher-value
jobs is achieved at the expense of cancelling more lower-
value jobs and the net result is a flat profit curve.

Note that the service provider’s tendency to cancel low-
value jobs when higher-value jobs arrive is what motivated
our desire for client aggregate-utility functions.

We used these first results to establish a baseline oper-
ating point for the remaining experiments. The parameters
that resulted are shown in Table 1.

6.2 Aggregate utility functions
Figure 8 shows the effect of introducing client aggregate
utility functions under different service-provider contract-
admission policies (section 3.1). For this experiment, the
aggregate utility function is f

�
x � � x2 (α � 1 and β � 2).

Figure 8(a) shows profit earned using each policy. In
the presence of aggregate-utility aware (“sensitive”) clients,
profit drops dramatically as load increases for the oblivious
admission control policy, which admits all contracts. The
other three policies, which limit the number of contracts and
hence the number of jobs submitted, see increasing profit
with increasing load.

Figure 8(d) shows that while just as many (in fact, more)
jobs are completed using the oblivious policy, there are also
a lot of cancelled jobs. Fortunately, since first-profit-rate
job scheduling always prioritizes the high-value jobs, vir-
tually all (95-100%) of the jobs for high-value contracts
are completed. At the same time, a much lower fraction
of jobs are completed for low-value contracts. Combined
with the penalty incurred for cancelled jobs, the lower frac-
tion causes the overall revenue earned from the low-value
contracts to result in negative profit. In fact, for low-value
contracts, if only 90% of the jobs complete, the aggregate
utility function reduces an average job value of 12 to 10
(which equals cost). When fewer than 90% complete, the
completed jobs are actually run at a loss. The preempt-
conservative policy, by contrast, finishes over 90% of the
jobs for most of the low-value contracts that it accepts.

Figure 8(c) shows how many fewer contracts are ac-
cepted using the policies that monitor and limit load. The
unrealistic high-value-only policy accepts the 20% of con-
tracts that are high-value and completes nearly every job at
full value, as seen in Figure 8(d). However, job arrival is
bursty enough that even this policy cannot complete every
high-value job, which is why there are small bands of com-
pleted (late) and cancelled jobs at the top of the bar. Fur-
thermore, the much smaller number of jobs completed us-
ing the high-value-only policy as compared to the preempt-
conservative policy shows that not enough contracts are ac-
cepted when using the high-value-only policy to keep the
resources utilized.

The two policies that consider load when performing
contract admission, conservative and preempt-conservative,
accept and complete about the same number of jobs. How-
ever, Figures 8(b) and (c) show that preempt-conservative
is able to accept more contracts. By abandoning some con-
tracts in favor of more profitable contracts that arrive later,
the preempt-conservative algorithm sees a higher percent-
age of high-value jobs. These high-value jobs then have a
large positive impact on its profit.

Note that profit for these experiments is lower for all
policies than in the baseline experiments. By choosing an
aggregate utility function where α � 1 and β � 2, the effect
of the aggregate utility function is always to diminish rev-
enue. In other experiments where α � 2, omitted here for
lack of space, we see much higher (nearly double) profit.

All the runs shown in Figure 8 use the effective job utility
function described in Section 3.2 when constructing sched-
ules, both for job admission and job scheduling decisions.
The benefit of using the bias calculated by this function
is shown in Figure 9, which compares the performance of
the preempt-conservative policy with and without the bias.
Adding the bias improves profit because about 5% more
low-value jobs are accepted and run: while these jobs are in-
dividually unprofitable and hence rejected without the bias,
completing these jobs raises the percentage of jobs com-
pleted and hence the aggregate utility bonus enough to more
than compensate for their individual losses.

The results shown in Figure 8 for α � 1 and β � 2 are
similar with other values of β � 1, as shown in Figure 10.
For larger values of α and β , adding the bias calculation has
a larger impact on the service provider’s profitability. This
greater profitability is important for clients as well. Client
satisfaction is measured in terms of value per accepted con-
tract, and as we can see from Figures 8(a) and (c), the al-
gorithms earning a higher profit-rate also deliver a greater
level of client satisfaction.

We use these results establish an operating point for the
experiments relating to variability in the resource provider.
For the remaining set of experiments, we use the preempt-
conservative contract admission policy.
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Figure 8. Sensitive clients. Exploring the effects of different service provider contract-admission policies.
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Figure 9. Job admission and scheduling. Enabling and disabling the effective job utility function.
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6.3 Static and variable resource providers

Figure 11 shows the effect of varying the resource provider
behavior (Section 4) for the two contract-admission prof-
itability tests described in section 3.1.

Figure 11(a) shows the results of fixing the resource
costs, but varying the available resource quantity by chang-
ing the resource provider’s quantity ratio (labeled as qRatio
in the figures). A quantity ratio of 1 corresponds to the static
resource provider used in the previous experiments.

As the quantity ratio increases, the profit rate of the ser-
vice provider decreases. We hold the average number of
resources constant, so when there are more resources in an
on period, the number of resources in the off period drops
accordingly. For a fixed level of demand, there is an abun-
dance of profitable jobs during the low quantity periods and
not enough jobs during the high quantity periods to use all
of the resources. When the quantity ratio is 8, the contract
completion rate is so low that most of the jobs from low-
value contracts incur a loss, regardless of whether or not the
job was actually run. This loss completely offsets the profit
from the high-value contracts, which are also completing an
average of only 85% of their jobs rather than the 98% they
complete with static quantities of resources.

Figure 11(b) shows the effect of variable resource costs
(by varying the cost-ratio) and also illustrates the benefit
of turning on the profitability check from Section 3.1. As
in Figure 11(a), increasing the quantity ratio decreases the
profitability of the service provider. However, both with
and without variable quantities of resources, the contract-
cost=variable admission control policy outperformed the
contract-cost=any policy, especially at higher offered load,
since the provider is able to complete a larger fraction of
jobs for a given contract. Note that a higher degree of client
sensitivity (i.e. larger α or β ) would increase the profit gap
between the two policies.
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6.4 Summary
We used the initial explorations to establish a workload mix
that suitably stressed the job execution service running on a
static resource provider.

Adding in aggregate utility functions demonstrated the
importance of being aware of client goals. Policies that took
such client needs into account did significantly better than
ones that did not.

We then explored how the variable resource provider’s
behavior affected the system’s behavior, and saw that tak-
ing account of changing resource availability and cost gave
much better results than being oblivious to such concerns.

Out of all our designs, we recommend the use of a
preempt-conservative contract admission algorithm with
a variable cost profitability prediction, and the effective-
utility bias job scheduling approach. Together, these repre-
sent a good balance between effectiveness, robustness, and
ease of implementation and execution.

7 Related work
Our work extends three previous studies in this area: Mil-
lennium [7], RiskReward [14], and [21]. Both Millennium
and RiskReward merged the role of the service provider
and resource provider and assumed a fixed-sized pool of
nodes on which to run jobs. In doing so, they did not ex-
plicitly consider resource costs or resource variability. [21]
used a system model similar to ours with a service provider
that rents resources instead of owning them. We directly
build upon this work, but instead of exploring the effects
of resource availability uncertainty, we explore the effects
of known variability. Unlike our work, none of these three
studies considered aggregate performance constraints.

Our work is part of the larger field of computational
economics, or agorics, which uses market models to de-
termine the pricing of services and resources (e.g., Spawn
[23], Mariposa [22], and Tycoon [17]). Our work extends
these ideas by applying the notion of charging to other ser-
vice types as well as resource rentals, but does not explicitly
consider price-setting mechanisms such as auctions.

As in much prior work, we use per-job utility functions
to specify the client’s value of job completion. This is a
well-trodden field: the Alpha OS [8] handled time-varying
utility functions; [6] discussed how to do processor schedul-
ing for them; [18] looked at tradeoffs between multiple ap-
plications with multiple utility-dimensions; Muse [5] and
Unity [24] used utility functions for continuous fine grained
service quality control; and [20] described using utility
functions to allow speculative execution of tasks. Unlike
prior systems, our clients use aggregate utility functions to
control service provider behavior across multiple jobs. [16]
used a single utility function that aggregated data from mul-
tiple sources. We use both per-job and aggregate utility
functions.

Our client contracts indicate how a service provider
should perform in the face of changing underlying condi-
tions and conflicting service contracts. Off-line bilateral
contracts [1] have been used to specify service quality for
distributed stream-processing applications; SNAP [9] per-
forms service and resource allocations based on three lev-
els of agreements for resource management in grid com-
puting: application performance, resource guarantees, and
binding of applications to resources. Unlike SNAP, our job-
execution service, rather than the client, determines how to
bind applications to resources. [10] is similar, but also in-
cludes client level objectives and abstract resource objec-
tives, and focuses on the service provider’s need to manage
resources and applications; however, they do not look at the
effects of aggregate objectives nor the performance of a ser-
vice provider to meet their objectives. GRUBER [11] uses
contracts for job scheduling based on the amount of CPU a
group is allowed to consume over a period of time, but does
not assign values to individual jobs.

8 Conclusions
We investigated a portion of the design space of service
providers and clients that wish to control aggregate-level
behavior in addition to per-work-item actions. We did so
in the context of an upper-level service provider that rents
resources rather than owns them, and has to handle varying
resource availability and cost.

We explored the effects of profit-aware algorithms, and
studied how load, aggregate utility functions, and the num-
ber and cost of resources influenced the service provider’s
profit.

We showed that our profit-aware approach outperforms
previous ones across a wide range of conditions, and make
the following additional observations:

� The idea of a self-interested, profit-aware service
provider is a powerful technique for thinking about,
generating and selecting algorithms, and avoiding im-
precision in defining a “good” outcome.

� The contract-admission control algorithms we devel-
oped seem to be quite effective, and our evaluation
highlighted how important careful selection of work
is for a service provider.

� Successfully handling aggregate utility functions is a
new result. Doing so also increases client utility, which
is an important result in its own right.

Our results demonstrate the importance of profit-aware
schedulers and admission-control algorithms, and include
cases where a decent profit could be obtained in place of
losses from less profit-sensitive algorithms.
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