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Abstract 
Starting in 1994/5, the Storage Systems Program at HP Labs 
embarked on a decade-long journey to automate the management 
of enterprise storage systems by means of a technique we initially 
called attribute-managed storage.  The key idea was to provide 
declarative specifications of workloads and their needs, and of 
storage devices and their capabilities, and to automate the 
mapping of one to the other.  One of many outcomes of the 
project was a specification language we called Rome1 – hence the 
title of this paper, which offers a short retrospective on the 
approach and some of the lessons we learned along the way. 

Categories and Subject Descriptors  D.4.2 Storage 
Management, D.4.5 Reliability, D.4.8 Performance, I.6.5 Model 
Development, K.4.3 [Organizational Impacts] automation, K.6.2 
Installation Management, K.6.4 System Management. 

General Terms Algorithms, Management, Measurement, 
Performance, Design, Economics, Reliability, Experimentation. 

Keywords storage management; attribute-based storage; 
declarative system management; storage performance models; 
solvers. 

1. Before the beginning 
In the late 1980s, I had worked on a scalable storage system 
called DataMesh [Wilkes1989], which advocated (about a decade 
too soon!) building a storage system out of intelligent building 
blocks containing a disk drive, some local processing power, and 
a high-speed network port.  The idea was to connect these 
together into a mesh, and build a storage system that could be 
scaled to meet whatever performance or availability demands 
were placed on it.  It quickly became obvious that such a beast 
would be a nightmare to control and configure if viewed a disk at 
a time, so we started to think about how to delegate control of 
design choices to it, starting with failure recovery goals 
[Wilkes1990]. 

DataMesh never took off. But the seed of an interesting idea had 
been planted. 

                                                 
1  The code names chosen by the HPL Storage Systems program team for 
the various project components were derived from an architectural theme 
consistent with our logo – a Corinthian column.  Over time, this pro-
gressed towards names with a generally classical bent.  We apologize for 
none of them! 

2. Setting out 
In 1994, the team I was then part of was finishing up helping our 
colleagues on the HP AutoRAID disk array project [Wilkes1996].  
AutoRAID automated the process of migrating stored data 
between mirrored and RAID 5 storage tiers, taking account of 
access patterns, available space, and reliability goals – completely 
transparently to its users.  We asked ourselves, “What if we could 
apply the AutoRAID ideas to an enterprise-scale storage system 
that spanned multiple disk arrays?” That is: what if users of large-
scale storage systems didn’t have to micro-manage the data 
placement, choice of RAID level, and kind and number of storage 
devices to purchase?  What if the system could work these things 
out for itself, given a specification of what the customer wanted?  
The obvious motivations applied: reduced system management 
costs; lower-cost system designs, faster (and more accurate) 
response to changing inputs; and fewer errors injected, because 
there would be less need for human intervention. 
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Figure 1. The mapping problem for an  
attribute-managed storage system. 

To accomplish this, we chose to separate the specification of what 
was desired from the process used to get to an answer – i.e., a 
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declarative system for storage management.  The name we chose 
was attribute-managed storage [Golding1995], by comparison to 
IBM’s system-managed storage [Gelb1989].  The overall 
structure of the problem we tackled is shown in Figure 1. 

Starting from the top, one or more applications generate access 
streams that are directed towards one or more stores, or storage 
containers.  Attributes associated with each stream capture the 
dynamic aspects of the workload: the rate at which data is 
accessed, whether it is read or written (or both), a desired 
maximum latency, and properties of the access pattern, such as 
whether it is largely sequential, or random-access, the sizes of 
requests, their burstiness, correlations between these aspects, and 
so on.  Attributes associated with stores capture the static aspects 
of the containers, such as how much data they contain, and their 
desired availability.  Finally, stores are mapped onto devices – 
real containers, such as disk drives and disk array logical units, 
which have attributes that capture their capabilities – capacity, 
performance, reliability (MTTDL, or mean time to data loss), 
cache behavior, and so on.  

We called the process of assigning stores to devices the mapping 
problem, and proposed to solve it automatically.  

Different aspects of the mapping problem included “how many 
devices are needed to support this load?”; “how much load can 
this set of devices support?”; and “half my data center has just 
burned down – which subset of the load can I still support?”  
Expressing choices between different applications or portions of 
the load caused us to start thinking about utility, although we 
elided this complication for much of our early work.  

In practice, we spent the majority of our time focused on the first 
question, on the grounds that most users had a set of work they 
wanted to get done, and were interested in seeing how to support 
it.  Designing for green-field sites that used only new resources 
was plenty hard enough, we felt.  In retrospect, we somewhat 
under-estimated the importance of deploying designs into existing 
environments. 

3. Packing for the journey 
We began by generating a mathematical formulation of the 
mapping problem as a constraint-based optimization problem, 
with the constraints being things like “all workloads should be 
assigned exactly once”, and “no capacity limit should be 
exceeded” (which covered both storage space and storage device 
utilization), and with objective functions of the form “minimize 
the cost of a complete solution” or “maximize the utility” 
[Shriver1996].  In practice, the majority of our work focused on 
designing storage systems to meet a particular performance goal 
while minimizing the overall system cost. 

Two outcomes were observable at this stage: a first, clear 
specification of a set of parameters and attributes for workloads, 
stores, and storage devices; and the need for models to determine 
whether constraints were satisfied.  

Adding up storage capacity to check a capacity constraint is 
trivial; determining if the load imposed by placing a set of stores 
on a device would be too high is much trickier.  We quickly ruled 
out simulations as being too costly, because the “does it fit?” 
question needed to be asked many, many times in the inner loop 
of the assignment engine.  To provide the necessary efficiency, 
we adopted analytic models for the expected behavior.  Our 

background in simulation models for storage devices 
[Ruemmler1994] led us to a set of analytical models for disk 
devices that was more complete than most, and yet executed 
quickly [Shriver1998]. 

We had started down the path of analytical performance models 
that would occupy us for much of our journey. 

To help ground our work, we picked the TPC-D benchmark 
[TPCD1995] as a representative sample of the kind of application 
we would have to cope with; we used it as a load generator, not as 
an audited benchmark.  Taking I/O traces of a system running this 
load showed us that there were several distinct phases in which 
one portion of the system was heavily used while another lay idle 
– and vice versa.  Time-sharing the storage resources between 
different phases could save as much as a factor of six in storage 
system cost. We addressed this issue developing a sophisticated 
set of performance models that could handle both short-term 
workload peaks and correlations between longer-term workload 
behaviors [Borowsky1998].   

Somewhere around this time it became clear that our ability to 
specify attributes and constraints would always exceed our ability 
to build storage-device models for them! 

We used the I/O monitoring technology built into the HP-UX 
operating system to provide insights into storage system 
performance, so it was natural for us to build tools that applied a 
host-based perspective to overall storage behavior, and emphasize 
the application perspective rather than the storage device one. To 
explore the data we had, we developed a set of analysis tools – 
first a trace analysis package called Rubicon, the second a highly-
compressed representation and analysis package called DataSeries 
– since made available as open source [Anderson2009]. The 
Buttress system allowed time-accurate replay of these traces 
against a real system [Anderson2004]. 

So far, we had just been modeling single disk drives.  Our real 
target was disk arrays, which introduced a great many 
complications in the performance models for various RAID levels 
[Varki2004].  Hard work on analytical device models eventually 
addressed these [Uysal2001]. 

Nonetheless, the time required to generate a set of calibrated 
storage device models proved troubling – as did the fact that it 
took a set of highly competent people with PhDs to do it.  An 
alternative approach was needed.  We found it in a careful 
application of brute force.  Instead of hand-crafting performance 
models to predict the likely behavior of a storage device from a 
priori knowledge about their design, we built models that 
extrapolated the likely behavior from sets of stored measurements 
– lots of them.  We called this approach table-based modeling 
[Anderson2001].  Spline-based interpolations to fit the data, and 
being careful about unwarranted extrapolations, gave us 
accuracies similar to – or better than – the analytic models, with 
comparable or better running times, and considerably less work 
on our part.  Even better, the set of measurements could easily be 
augmented from data obtained from the target system, once it was 
running, thereby both extending the models and increasing the 
model’s accuracy in exactly the areas where it was most useful. 

4. On the road, outbound 
Early on, it became clear that the search space we wanted to 
explore was rather large: this is a variant of the multi-



 

dimensional, multi-knapsack problem, which is (of course) NP 
complete – and the scale at which we were operating largely 
precluded exhaustive search.   

We gave the name solvers to the tools we used to explore 
alternative assignments of work to devices. Our first attempt at a 
solver was called Forum; it handled the single-device models 
described above, and used greedy hill-climbing to select the best 
alternative [Borowsky1997].  A few simple heuristics for ordering 
the examination of alternatives were explored, including 
(repeated) randomization of the order to consider workloads for 
assignment; sorting the workloads on various attributes, and using 
the Toyoda algorithm for deciding which device to pack the next 
load onto [Toyoda1975]. 

Forum tackled performance for single storage devices.  A 
completely separate tool, Corbel, was the first to tackle the 
conjoint design problem for availability and performance at the 
same time [Amiri1996].  Corbel synthesized RAID designs, tested 
their availability against the objectives associated with stores, and 
then selected a suitable design from the ones that were left.  
Unfortunately, Corbel was never integrated into our mainstream 
code base – partly because it relied on a somewhat hard-to-use 
Markov chain analysis tool that was written in Fortran.  Corbel 
used a greedy first-pass assignment process that took the raw 
hardware cost plus the cost of downtime into account, followed 
by a refinement pass that fixed up the solution by selective 
moving of a few stores that were not well-matched to their 
placements.  

5. Making good progress 
Our second attempt to support disk arrays was a solver called 
Minerva [Alvarez2001].  It tackled the problem in two parts: first, 
it tagged workloads with the recommended kind of RAID level 
that they should be assigned to, and then it performed a Forum-
like assignment using the RAID type as an additional constraint in 
the matching step.  As with Corbel, a final optimization pass 
cleaned up a few stragglers – especially stores that ended up 
consuming an entire RAID group to save cost. 

For Minerva to work well, we had to make good choices about 
deciding which RAID level to use for each store [Anderson2002].  
Using simple rules of thumb – as a human might do – produced 
acceptable answers, but integrating the choice into the process of 
assigning stores to devices did much better, albeit at the cost of 
additional computation time. 

At one point we thought that genetic algorithms (GAs) seemed 
like an obvious approach to this problem: the species genotypes 
would represent the current sets of assignments of load to devices, 
and mutations and combinations would explore the space of 
alternatives in an efficient fashion.  Having tried the experiment, 
we learned that the cost of evaluating each of the solutions was so 
high that it dominated the running time of the GA solver, even 
after aggressive memoization to avoid recalculating previously-
encountered partial results.  We moved on. 

Initially we had been leery of trying to do performance- and 
availability-based assignments simultaneously because of the 
huge search space that the assignment problem engenders.  
However, Eric Anderson was able to get around this problem by 
constructing a solver that used speculative exploration and back-
tracking using a tree-like representation of the design of a storage 

system and its assignments.  The solver, called Ergastulum,2 
performed much faster than Minerva, and was able to explore a 
great many more alternatives [Anderson2005]. 

6. Arriving at the destination 
The material so far has described how we developed solutions to 
the declarative design of a single storage system configuration.  
But our goal was always to develop a way to make the storage 
system self-managing – by which we meant self-configuring, self-
optimizing, self-healing, and all of the other self-* objectives.  

The approach was straightforward – at least in principle: (1) take 
a specification for what is wanted; (2) build a storage system that 
matches those needs; (3) deploy the application or workload on 
that system; (4) monitor it to see if it is meeting the actual needs 
of the workload; (5) re-design if necessary, and (6) reconfigure 
the storage and migrate the application's data – preferably while 
the application is still running.  Figure 2 shows the idea. 

Hippodrome was the name of the system we devised to do all this 
[Anderson2002a].  It went one better: it didn’t need a detailed 
specification of the performance requirements of the workload, 
just the capacity and availability needs.  It would run the 
application, measure the result, design and deploy a system to 
meet those needs, and iterate until the result stabilized – typically 
in only 2 to 3 iterations.  This was the system we had been aiming 
for all along. We liked to describe the way it would optimize the 
design of a storage system over a weekend, with no human 
intervention. 

Monitor

Configure /
reconfigure

Design /
redesign

Storage system

(Changing) business
requirements

 

Figure 2. The design, configure, run, monitor loop. 

7. Language barriers 
Workload descriptions (streams plus stores), device capabilities, 
models, objective functions, and configuration settings for our 
tools all needed writing down.  In previous work we had invented 
a way of using Tcl to configure a complicated simulation system 
[Golding1994], and we used the same approach to express the 
solver’s inputs and outputs, allowing us to feed the results from 
one run into another.  Our language, which we christened Rome, 

                                                 
2  The name means a private prison or workhouse for slaves attached to a 
Roman farm. It was selected when Eric was a summer intern in our group 
– he claims that it seemed like a good idea at the time.  Regrettably, the 
ACM TOCS reviewers took aversion to it, and we had to drop it from the 
published version. 



 

proved to be a convenient, flexible way to record attributes and 
other specifications; it readily supported nesting of components 
and dynamic extensibility.  Its interpreted nature made it easy to 
ignore elements that were not understood, providing support for 
simple versioning. 

Rome stood us in good stead for quite some time, but eventually 
became encrusted with hidden assumptions about the meanings of 
various elements and their relationships – the semantics proved 
ambiguous between different tools.  

Rome 2 was an attempt to provide a clean specification for both 
the syntax and semantics of the language we were using.  It was 
derived from the de facto version, and followed it quite closely in 
many ways.  We should have done this sooner; by the time Rome 
2 was ready, it was too late – the team had moved on to other 
goals, and it was never adopted. 

Towards the end of this effort, modeling systems like the 
Common Information Model (CIM) from the Distributed 
Management Task Force (DMTF) were coming to prominence, 
but we chose not to switch to them – partly because we found the 
representations somewhat unnatural and unwieldy; partly because 
the attributes that had been defined by then didn’t yet handle the 
things we needed; and partly because our tools were already 
“good enough” for our research focus.  

Another lesson we learned was the importance of separating the 
semantics of a language from its encoding.  Well-meaning people 
kept on pressing us (unhelpfully) to use XML – as if that would 
solve any of our problems.  To hammer this point home, two 
forms of representation were provided for the Rome language: the 
native version (derived from the Tcl syntax) was called Latin; the 
alternative XML one was called Greek – and was typically 2–3 
times as long and essentially unreadable.  In practice, having a 
language that humans can manipulate, plus automated translations 
back and forth into a more “standard” representation like XML, is 
the right way to proceed – a lesson that has yet to be learned by 
many groups, it seems!  

8. The journey back 
One slightly troubling aspect of our approach that we had chosen 
to elide was how we were going to answer the question: “where 
do the requirements come from?”  Hippodrome offered one way 
out (measure them), but that doesn’t work for systems that don’t 
exist yet, or for non-measurable metrics such as availability or 
reliability targets. 

Simply specifying a target availability level is fine in some 
circumstances, but is inadequate when a storage system can 
tolerate partial failures, which often result in data remaining 
accessible, but at reduced performance.  The notion of 
performability captures is better: it captures the fraction of the 
time a system is available at what performance – including no 
performance at all [Alvarez2001a].  Sadly, people find it hard 
enough to articulate availability goals, let alone performability 
ones.  Nonetheless, it is still a useful way of capturing the 
availability achieved by a system, and forms the basis for many 
service-level agreements. 

We never came up with a much better answer for obtaining 
performance objectives, but we did make some headway on the 
robustness requirements.  Rather than asking for target objectives 
at a technical level, we realized that it would be easier to capture 

business needs in financial terms such as the hourly penalty rate 
associated with an outage (unavailability) or data loss (rollback) – 
and that these are the real drivers for many decisions anyway.   

 

Figure 3.  A sample multi-site disaster-tolerant 
storage system design. 

Casting both penalties and system costs in financial terms allowed 
us to treat designing a system's availability, reliability, or 
performability properties an optimization problem, with the goal 
of minimizing the sum of the expected penalties and the cost of 
achieving a particular outcome. Quite complicated trade-offs can 
be handled automatically with this approach, such as the choices 
indicated in Figure 3, which shows a fairly typical situation, 
involving several sites, local and remote mirrors, and both disk- 
and tape-based recovery techniques. 

We initially applied this approach to designing the storage system 
itself [Keeton2004], then to evaluating how well the storage 
system behaves when things go wrong [Keeton2004a], and finally 
to automating the  design of the recovery process once things 
have started to go wrong [Keeton2006], reducing the likelihood 
that people will exacerbate the situation by making a bad decision 
when under stress. 

9. Entertaining excursions 
Hippodrome required the ability to reconfigure a storage system 
between iterations, but there are plenty of other reasons to want to 
move (or migrate) data from one setup to another.   

The setup here is simple: descriptions are provided of an initial 
data layout and a final one, and the goal is to derive a plan that 
migrates the data from one to the other, while minimizing some 
goals, such as the number of spare staging areas needed, or the 
elapsed time, or both.  Constraints might include the rate at which 
data can be moved, the amount of spare capacity, or the amount 
of parallelism allowed.  We found that applying a declarative 
problem-specification plus an automated solver to the migration 
problem led to similar dividends as with the assignment problem 
[Saia2001, Anderson2008].  The problem is by no means 
completely solved: our work didn’t support changing the format 
of containers or taking performance effects such as network 
bottlenecks into account. 

Our early work ignored the storage area network (SAN) that is 
typically used in an enterprise to connect host computers to their 
storage devices.  This was obviously an over-simplification, 
although it served us well for a long time because SAN costs are 
often only a small fraction of the total system cost.  Nonetheless, 
we became aware of SAN designs that cost several million dollars 
to build, and decided this was worth some attention.   



 

 

 

 

Figure 4. A sample SAN design problem  
(top: input, bottom: output). 

The approach we took was to treat it as another design problem.  
The inputs were the output from one of our storage system design 
tools, together with the objective function – typically minimize 
cost, perhaps with an requirement that there be no single point of 
failure to increase availability.  The output was a design for the 
SAN, including the choice of devices (FibreChannel switches and 
hubs), the network topology to use, and the wiring diagram.  
Leaving the topology as a free variable gave us the freedom to 
design solutions that were often significantly cheaper than the 
regular structures of the kinds humans preferred, albeit at the cost 
of symmetry [Ward2002].  Figure 4 shows a sample problem, 
with a solution that avoids any single point of failure. 

As described so far, the storage system design cycle is a long-
lived one, operating at the timescale of provisioning decisions 
(hours or days).  In order to cope with shorter-term fluctuations, 
it’s necessary to provide a finer-grained control mechanism, some 
way to enforce quality-of-service goals at runtime [Karlsson2004, 
Wang2007].  Doing so requires a clear understanding of the 
objectives that it is intended to enforce: another example of the 
need for precise specifications. 

10. Returning home 
What did all this teach us?  First:  declarative approaches are 
powerful – they can be made to work at significant scale and 
complexity, and across a wide range of problems.  The 
capabilities of the technology are exciting; and the use of goal-
based declarative specifications seems much cleaner than rule-
based or process-based ones such as workflows. 

Second: deploying such systems is much more than a technical 
problem.  In fact, I believe that the single greatest barrier to the 
adoption of automated solutions is not generating the technology 
to build them, but our ability to persuade the likely users that they 
should trust that the systems will do the right thing, in all 
circumstances.  To this end, we need to invest more in making our 
systems trustworthy – which means ensuring that they don’t 
surprise people; making it easier to express what we want them to 
do; putting limits on what they can do without our consent; and 
explaining their decisions when requested.   

Ultimately, we need to remind ourselves that we are building 
systems to serve people, and the success of our technical 
accomplishments will be dictated by how comfortable we can 
make those people with what we are accomplishing on their 
behalf.  Success will bring many benefits – lower costs, fewer 
errors, more rapid responses to environmental changes and system 
faults, and more time for people to spend their lives on creative 
pursuits, rather than repetitive drudgery.  It will be worth it! 
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