

Traveling to Rome:
a retrospective on the journey

john wilkes
HP Laboratories, Palo Alto, CA

john@e-wilkes.com

Abstract
Starting in 1994/5, the Storage Systems Program at HP Labs
embarked on a decade-long journey to automate the management
of enterprise storage systems by means of a technique we initially
called attribute-managed storage. The key idea was to provide
declarative specifications of workloads and their needs, and of
storage devices and their capabilities, and to automate the
mapping of one to the other. One of many outcomes of the
project was a specification language we called Rome1 – hence the
title of this paper, which offers a short retrospective on the
approach and some of the lessons we learned along the way.

Categories and Subject Descriptors D.4.2 Storage
Management, D.4.5 Reliability, D.4.8 Performance, I.6.5 Model
Development, K.4.3 [Organizational Impacts] automation, K.6.2
Installation Management, K.6.4 System Management.

General Terms Algorithms, Management, Measurement,
Performance, Design, Economics, Reliability, Experimentation.

Keywords storage management; attribute-based storage;
declarative system management; storage performance models;
solvers.

1. Before the beginning
In the late 1980s, I had worked on a scalable storage system
called DataMesh [Wilkes1989], which advocated (about a decade
too soon!) building a storage system out of intelligent building
blocks containing a disk drive, some local processing power, and
a high-speed network port. The idea was to connect these
together into a mesh, and build a storage system that could be
scaled to meet whatever performance or availability demands
were placed on it. It quickly became obvious that such a beast
would be a nightmare to control and configure if viewed a disk at
a time, so we started to think about how to delegate control of
design choices to it, starting with failure recovery goals
[Wilkes1990].

DataMesh never took off. But the seed of an interesting idea had
been planted.

1 The code names chosen by the HPL Storage Systems program team for
the various project components were derived from an architectural theme
consistent with our logo – a Corinthian column. Over time, this pro-
gressed towards names with a generally classical bent. We apologize for
none of them!

2. Setting out
In 1994, the team I was then part of was finishing up helping our
colleagues on the HP AutoRAID disk array project [Wilkes1996].
AutoRAID automated the process of migrating stored data
between mirrored and RAID 5 storage tiers, taking account of
access patterns, available space, and reliability goals – completely
transparently to its users. We asked ourselves, “What if we could
apply the AutoRAID ideas to an enterprise-scale storage system
that spanned multiple disk arrays?” That is: what if users of large-
scale storage systems didn’t have to micro-manage the data
placement, choice of RAID level, and kind and number of storage
devices to purchase? What if the system could work these things
out for itself, given a specification of what the customer wanted?
The obvious motivations applied: reduced system management
costs; lower-cost system designs, faster (and more accurate)
response to changing inputs; and fewer errors injected, because
there would be less need for human intervention.

stores

mapping
engine

applicationsapplications

e.g., throughput: 4MB/s
random 4KB accesses, 80% reads
max latency: 200ms

e.g., capacity: 12TB
availability: > 99.999%

e.g., capacity: 50TB
random IO performance: 200/s
sequential IO performance: 40MB/s
layouts: RAID1, RAID5
MTTDL: > 0.6M hours

applications

assignment

stores

devices

streams

Figure 1. The mapping problem for an
attribute-managed storage system.

To accomplish this, we chose to separate the specification of what
was desired from the process used to get to an answer – i.e., a

john
Typewritten Text
Appears in Operating Systems Review 43(1):10-15, January 2009.

declarative system for storage management. The name we chose
was attribute-managed storage [Golding1995], by comparison to
IBM’s system-managed storage [Gelb1989]. The overall
structure of the problem we tackled is shown in Figure 1.

Starting from the top, one or more applications generate access
streams that are directed towards one or more stores, or storage
containers. Attributes associated with each stream capture the
dynamic aspects of the workload: the rate at which data is
accessed, whether it is read or written (or both), a desired
maximum latency, and properties of the access pattern, such as
whether it is largely sequential, or random-access, the sizes of
requests, their burstiness, correlations between these aspects, and
so on. Attributes associated with stores capture the static aspects
of the containers, such as how much data they contain, and their
desired availability. Finally, stores are mapped onto devices –
real containers, such as disk drives and disk array logical units,
which have attributes that capture their capabilities – capacity,
performance, reliability (MTTDL, or mean time to data loss),
cache behavior, and so on.

We called the process of assigning stores to devices the mapping
problem, and proposed to solve it automatically.

Different aspects of the mapping problem included “how many
devices are needed to support this load?”; “how much load can
this set of devices support?”; and “half my data center has just
burned down – which subset of the load can I still support?”
Expressing choices between different applications or portions of
the load caused us to start thinking about utility, although we
elided this complication for much of our early work.

In practice, we spent the majority of our time focused on the first
question, on the grounds that most users had a set of work they
wanted to get done, and were interested in seeing how to support
it. Designing for green-field sites that used only new resources
was plenty hard enough, we felt. In retrospect, we somewhat
under-estimated the importance of deploying designs into existing
environments.

3. Packing for the journey
We began by generating a mathematical formulation of the
mapping problem as a constraint-based optimization problem,
with the constraints being things like “all workloads should be
assigned exactly once”, and “no capacity limit should be
exceeded” (which covered both storage space and storage device
utilization), and with objective functions of the form “minimize
the cost of a complete solution” or “maximize the utility”
[Shriver1996]. In practice, the majority of our work focused on
designing storage systems to meet a particular performance goal
while minimizing the overall system cost.

Two outcomes were observable at this stage: a first, clear
specification of a set of parameters and attributes for workloads,
stores, and storage devices; and the need for models to determine
whether constraints were satisfied.

Adding up storage capacity to check a capacity constraint is
trivial; determining if the load imposed by placing a set of stores
on a device would be too high is much trickier. We quickly ruled
out simulations as being too costly, because the “does it fit?”
question needed to be asked many, many times in the inner loop
of the assignment engine. To provide the necessary efficiency,
we adopted analytic models for the expected behavior. Our

background in simulation models for storage devices
[Ruemmler1994] led us to a set of analytical models for disk
devices that was more complete than most, and yet executed
quickly [Shriver1998].

We had started down the path of analytical performance models
that would occupy us for much of our journey.

To help ground our work, we picked the TPC-D benchmark
[TPCD1995] as a representative sample of the kind of application
we would have to cope with; we used it as a load generator, not as
an audited benchmark. Taking I/O traces of a system running this
load showed us that there were several distinct phases in which
one portion of the system was heavily used while another lay idle
– and vice versa. Time-sharing the storage resources between
different phases could save as much as a factor of six in storage
system cost. We addressed this issue developing a sophisticated
set of performance models that could handle both short-term
workload peaks and correlations between longer-term workload
behaviors [Borowsky1998].

Somewhere around this time it became clear that our ability to
specify attributes and constraints would always exceed our ability
to build storage-device models for them!

We used the I/O monitoring technology built into the HP-UX
operating system to provide insights into storage system
performance, so it was natural for us to build tools that applied a
host-based perspective to overall storage behavior, and emphasize
the application perspective rather than the storage device one. To
explore the data we had, we developed a set of analysis tools –
first a trace analysis package called Rubicon, the second a highly-
compressed representation and analysis package called DataSeries
– since made available as open source [Anderson2009]. The
Buttress system allowed time-accurate replay of these traces
against a real system [Anderson2004].

So far, we had just been modeling single disk drives. Our real
target was disk arrays, which introduced a great many
complications in the performance models for various RAID levels
[Varki2004]. Hard work on analytical device models eventually
addressed these [Uysal2001].

Nonetheless, the time required to generate a set of calibrated
storage device models proved troubling – as did the fact that it
took a set of highly competent people with PhDs to do it. An
alternative approach was needed. We found it in a careful
application of brute force. Instead of hand-crafting performance
models to predict the likely behavior of a storage device from a
priori knowledge about their design, we built models that
extrapolated the likely behavior from sets of stored measurements
– lots of them. We called this approach table-based modeling
[Anderson2001]. Spline-based interpolations to fit the data, and
being careful about unwarranted extrapolations, gave us
accuracies similar to – or better than – the analytic models, with
comparable or better running times, and considerably less work
on our part. Even better, the set of measurements could easily be
augmented from data obtained from the target system, once it was
running, thereby both extending the models and increasing the
model’s accuracy in exactly the areas where it was most useful.

4. On the road, outbound
Early on, it became clear that the search space we wanted to
explore was rather large: this is a variant of the multi-

dimensional, multi-knapsack problem, which is (of course) NP
complete – and the scale at which we were operating largely
precluded exhaustive search.

We gave the name solvers to the tools we used to explore
alternative assignments of work to devices. Our first attempt at a
solver was called Forum; it handled the single-device models
described above, and used greedy hill-climbing to select the best
alternative [Borowsky1997]. A few simple heuristics for ordering
the examination of alternatives were explored, including
(repeated) randomization of the order to consider workloads for
assignment; sorting the workloads on various attributes, and using
the Toyoda algorithm for deciding which device to pack the next
load onto [Toyoda1975].

Forum tackled performance for single storage devices. A
completely separate tool, Corbel, was the first to tackle the
conjoint design problem for availability and performance at the
same time [Amiri1996]. Corbel synthesized RAID designs, tested
their availability against the objectives associated with stores, and
then selected a suitable design from the ones that were left.
Unfortunately, Corbel was never integrated into our mainstream
code base – partly because it relied on a somewhat hard-to-use
Markov chain analysis tool that was written in Fortran. Corbel
used a greedy first-pass assignment process that took the raw
hardware cost plus the cost of downtime into account, followed
by a refinement pass that fixed up the solution by selective
moving of a few stores that were not well-matched to their
placements.

5. Making good progress
Our second attempt to support disk arrays was a solver called
Minerva [Alvarez2001]. It tackled the problem in two parts: first,
it tagged workloads with the recommended kind of RAID level
that they should be assigned to, and then it performed a Forum-
like assignment using the RAID type as an additional constraint in
the matching step. As with Corbel, a final optimization pass
cleaned up a few stragglers – especially stores that ended up
consuming an entire RAID group to save cost.

For Minerva to work well, we had to make good choices about
deciding which RAID level to use for each store [Anderson2002].
Using simple rules of thumb – as a human might do – produced
acceptable answers, but integrating the choice into the process of
assigning stores to devices did much better, albeit at the cost of
additional computation time.

At one point we thought that genetic algorithms (GAs) seemed
like an obvious approach to this problem: the species genotypes
would represent the current sets of assignments of load to devices,
and mutations and combinations would explore the space of
alternatives in an efficient fashion. Having tried the experiment,
we learned that the cost of evaluating each of the solutions was so
high that it dominated the running time of the GA solver, even
after aggressive memoization to avoid recalculating previously-
encountered partial results. We moved on.

Initially we had been leery of trying to do performance- and
availability-based assignments simultaneously because of the
huge search space that the assignment problem engenders.
However, Eric Anderson was able to get around this problem by
constructing a solver that used speculative exploration and back-
tracking using a tree-like representation of the design of a storage

system and its assignments. The solver, called Ergastulum,2
performed much faster than Minerva, and was able to explore a
great many more alternatives [Anderson2005].

6. Arriving at the destination
The material so far has described how we developed solutions to
the declarative design of a single storage system configuration.
But our goal was always to develop a way to make the storage
system self-managing – by which we meant self-configuring, self-
optimizing, self-healing, and all of the other self-* objectives.

The approach was straightforward – at least in principle: (1) take
a specification for what is wanted; (2) build a storage system that
matches those needs; (3) deploy the application or workload on
that system; (4) monitor it to see if it is meeting the actual needs
of the workload; (5) re-design if necessary, and (6) reconfigure
the storage and migrate the application's data – preferably while
the application is still running. Figure 2 shows the idea.

Hippodrome was the name of the system we devised to do all this
[Anderson2002a]. It went one better: it didn’t need a detailed
specification of the performance requirements of the workload,
just the capacity and availability needs. It would run the
application, measure the result, design and deploy a system to
meet those needs, and iterate until the result stabilized – typically
in only 2 to 3 iterations. This was the system we had been aiming
for all along. We liked to describe the way it would optimize the
design of a storage system over a weekend, with no human
intervention.

Monitor

Configure /
reconfigure

Design /
redesign

Storage system

(Changing) business
requirements

Figure 2. The design, configure, run, monitor loop.

7. Language barriers
Workload descriptions (streams plus stores), device capabilities,
models, objective functions, and configuration settings for our
tools all needed writing down. In previous work we had invented
a way of using Tcl to configure a complicated simulation system
[Golding1994], and we used the same approach to express the
solver’s inputs and outputs, allowing us to feed the results from
one run into another. Our language, which we christened Rome,

2 The name means a private prison or workhouse for slaves attached to a
Roman farm. It was selected when Eric was a summer intern in our group
– he claims that it seemed like a good idea at the time. Regrettably, the
ACM TOCS reviewers took aversion to it, and we had to drop it from the
published version.

proved to be a convenient, flexible way to record attributes and
other specifications; it readily supported nesting of components
and dynamic extensibility. Its interpreted nature made it easy to
ignore elements that were not understood, providing support for
simple versioning.

Rome stood us in good stead for quite some time, but eventually
became encrusted with hidden assumptions about the meanings of
various elements and their relationships – the semantics proved
ambiguous between different tools.

Rome 2 was an attempt to provide a clean specification for both
the syntax and semantics of the language we were using. It was
derived from the de facto version, and followed it quite closely in
many ways. We should have done this sooner; by the time Rome
2 was ready, it was too late – the team had moved on to other
goals, and it was never adopted.

Towards the end of this effort, modeling systems like the
Common Information Model (CIM) from the Distributed
Management Task Force (DMTF) were coming to prominence,
but we chose not to switch to them – partly because we found the
representations somewhat unnatural and unwieldy; partly because
the attributes that had been defined by then didn’t yet handle the
things we needed; and partly because our tools were already
“good enough” for our research focus.

Another lesson we learned was the importance of separating the
semantics of a language from its encoding. Well-meaning people
kept on pressing us (unhelpfully) to use XML – as if that would
solve any of our problems. To hammer this point home, two
forms of representation were provided for the Rome language: the
native version (derived from the Tcl syntax) was called Latin; the
alternative XML one was called Greek – and was typically 2–3
times as long and essentially unreadable. In practice, having a
language that humans can manipulate, plus automated translations
back and forth into a more “standard” representation like XML, is
the right way to proceed – a lesson that has yet to be learned by
many groups, it seems!

8. The journey back
One slightly troubling aspect of our approach that we had chosen
to elide was how we were going to answer the question: “where
do the requirements come from?” Hippodrome offered one way
out (measure them), but that doesn’t work for systems that don’t
exist yet, or for non-measurable metrics such as availability or
reliability targets.

Simply specifying a target availability level is fine in some
circumstances, but is inadequate when a storage system can
tolerate partial failures, which often result in data remaining
accessible, but at reduced performance. The notion of
performability captures is better: it captures the fraction of the
time a system is available at what performance – including no
performance at all [Alvarez2001a]. Sadly, people find it hard
enough to articulate availability goals, let alone performability
ones. Nonetheless, it is still a useful way of capturing the
availability achieved by a system, and forms the basis for many
service-level agreements.

We never came up with a much better answer for obtaining
performance objectives, but we did make some headway on the
robustness requirements. Rather than asking for target objectives
at a technical level, we realized that it would be easier to capture

business needs in financial terms such as the hourly penalty rate
associated with an outage (unavailability) or data loss (rollback) –
and that these are the real drivers for many decisions anyway.

Figure 3. A sample multi-site disaster-tolerant
storage system design.

Casting both penalties and system costs in financial terms allowed
us to treat designing a system's availability, reliability, or
performability properties an optimization problem, with the goal
of minimizing the sum of the expected penalties and the cost of
achieving a particular outcome. Quite complicated trade-offs can
be handled automatically with this approach, such as the choices
indicated in Figure 3, which shows a fairly typical situation,
involving several sites, local and remote mirrors, and both disk-
and tape-based recovery techniques.

We initially applied this approach to designing the storage system
itself [Keeton2004], then to evaluating how well the storage
system behaves when things go wrong [Keeton2004a], and finally
to automating the design of the recovery process once things
have started to go wrong [Keeton2006], reducing the likelihood
that people will exacerbate the situation by making a bad decision
when under stress.

9. Entertaining excursions
Hippodrome required the ability to reconfigure a storage system
between iterations, but there are plenty of other reasons to want to
move (or migrate) data from one setup to another.

The setup here is simple: descriptions are provided of an initial
data layout and a final one, and the goal is to derive a plan that
migrates the data from one to the other, while minimizing some
goals, such as the number of spare staging areas needed, or the
elapsed time, or both. Constraints might include the rate at which
data can be moved, the amount of spare capacity, or the amount
of parallelism allowed. We found that applying a declarative
problem-specification plus an automated solver to the migration
problem led to similar dividends as with the assignment problem
[Saia2001, Anderson2008]. The problem is by no means
completely solved: our work didn’t support changing the format
of containers or taking performance effects such as network
bottlenecks into account.

Our early work ignored the storage area network (SAN) that is
typically used in an enterprise to connect host computers to their
storage devices. This was obviously an over-simplification,
although it served us well for a long time because SAN costs are
often only a small fraction of the total system cost. Nonetheless,
we became aware of SAN designs that cost several million dollars
to build, and decided this was worth some attention.

Figure 4. A sample SAN design problem
(top: input, bottom: output).

The approach we took was to treat it as another design problem.
The inputs were the output from one of our storage system design
tools, together with the objective function – typically minimize
cost, perhaps with an requirement that there be no single point of
failure to increase availability. The output was a design for the
SAN, including the choice of devices (FibreChannel switches and
hubs), the network topology to use, and the wiring diagram.
Leaving the topology as a free variable gave us the freedom to
design solutions that were often significantly cheaper than the
regular structures of the kinds humans preferred, albeit at the cost
of symmetry [Ward2002]. Figure 4 shows a sample problem,
with a solution that avoids any single point of failure.

As described so far, the storage system design cycle is a long-
lived one, operating at the timescale of provisioning decisions
(hours or days). In order to cope with shorter-term fluctuations,
it’s necessary to provide a finer-grained control mechanism, some
way to enforce quality-of-service goals at runtime [Karlsson2004,
Wang2007]. Doing so requires a clear understanding of the
objectives that it is intended to enforce: another example of the
need for precise specifications.

10. Returning home
What did all this teach us? First: declarative approaches are
powerful – they can be made to work at significant scale and
complexity, and across a wide range of problems. The
capabilities of the technology are exciting; and the use of goal-
based declarative specifications seems much cleaner than rule-
based or process-based ones such as workflows.

Second: deploying such systems is much more than a technical
problem. In fact, I believe that the single greatest barrier to the
adoption of automated solutions is not generating the technology
to build them, but our ability to persuade the likely users that they
should trust that the systems will do the right thing, in all
circumstances. To this end, we need to invest more in making our
systems trustworthy – which means ensuring that they don’t
surprise people; making it easier to express what we want them to
do; putting limits on what they can do without our consent; and
explaining their decisions when requested.

Ultimately, we need to remind ourselves that we are building
systems to serve people, and the success of our technical
accomplishments will be dictated by how comfortable we can
make those people with what we are accomplishing on their
behalf. Success will bring many benefits – lower costs, fewer
errors, more rapid responses to environmental changes and system
faults, and more time for people to spend their lives on creative
pursuits, rather than repetitive drudgery. It will be worth it!

11. Acknowledgements
The work described here was almost entirely done by others – a
talented set of colleagues whom I had the pleasure and good
fortune to work with over the last two decades. My thanks to
them all.

12. References
Many of these papers can be found online at:
http://www.hpl.hp.com/research/ssp/papers.
[Alvarez2001] Guillermo A. Alvarez, Elizabeth Borowsky, Susie

Go, Theodore H. Romer, Ralph Becker-Szendy, Richard
Golding, Arif Merchant, Mirjana Spasojevic, Alistair Veitch,
and John Wilkes. Minerva: an automated resource
provisioning tool for large-scale storage systems. ACM
Transactions on Computer Systems 19(4):483-518,
November 2001.

[Alvarez2001a] Guillermo A. Alvarez, Mustafa Uysal, and Arif
Merchant. Efficient verification of performability guarantees.
International Workshop on Performability Modeling of
Computer and Communication Systems (PMCCS 5,
Erlangen, Germany), pp. 95-99, September 2001.

[Amiri1996] Khalil Amiri and John Wilkes. Automatic design of
storage systems to meet availability requirements. Technical
report HPL-SSP-96-17, HP Laboratories, August 1996.

[Anderson2001] Eric Anderson. Simple table-based modeling of
storage devices. Technical report HPL-SSP-2001-4, HP
Laboratories, July 2001.

[Anderson2002] Eric Anderson, Ram Swaminathan, Alistair
Veitch, Guillermo A. Alvarez and John Wilkes. Selecting
RAID levels for disk arrays. File and Storage Technology
(FAST’02, Monterey, CA) pp. 189-201, January 2002.

[Anderson2002a] Eric Anderson, Michael Hobbs, Kimberly
Keeton, Susan Spence, Mustafa Uysal, and Alistair Veitch.
Hippodrome: running circles around storage administration.
File and Storage Technology (FAST’02, Monterey, CA) pp.
175-188, January 2002.

[Anderson2004] Eric Anderson, Mahesh Kallahalla, Mustafa
Uysal, Ram Swaminathan. Buttress: a toolkit for flexible and
high fidelity I/O benchmarking. File and Storage
Technology (FAST’04, San Francisco, CA), pp. 45-58,
March-April 2004.

[Anderson2005] Eric Anderson, Susan Spence, Ram
Swaminathan, Mahesh Kallahalla, Qian Wang. Quickly
finding near-optimal storage designs. ACM Transactions on
Computer Systems 23(4): 337-374, November 2005.

[Anderson2008] E. Anderson, J. Hartline, M. Hobbs, A. Karlin, J.
Saia, R. Swaminathan and J. Wilkes. Algorithms for Data
Migration. Algorithmica 51, August 2008. DOI
10.1007/s00453-008-9214-y.

[Anderson2009] Eric Anderson, Martin Arlitt, Brad Morrey, and
Alistair Veitch. DataSeries: an efficient, flexible data format
for structured serial data. Operating Systems Review 43(1),
January 2009 .

[Borowsky1997] E. Borowsky, R. Golding, A. Merchant, L.
Schreier, E.Shriver, M.Spasojevic, and J. Wilkes. Using
attribute-managed storage to achieve QoS. 5th Intl.
Workshop on Quality of Service (IWQoS, Columbia Univ.,
New York, NY), June 1997, pp. 199-202.

[Borowsky1998] Elizabeth Borowsky, Richard Golding, Patricia
Jacobson, Arif Merchant, Louis Schreier, Mirjana Spasojevic
and John Wilkes. Capacity planning with phased workloads.
Workshop on Software and Performance (WOSP’98, Santa
Fe, NM), October 1998.

[DMTF-CIM2008] Distributed Management Task Force, Inc.
Common Information Model (CIM) Standards, 2008.
http://www.dmtf.org/standards/cim/.

[Gelb1989] J. P. Gelb. System managed storage. IBM Systems
Journal 28(1):77–103, 1989.

[Golding1994] Richard Golding, Carl Staelin, Tim Sullivan, John
Wilkes. "Tcl cures 98.3% of all known simulation
configuration problems" claims astonished researcher! Tcl
Workshop (New Orleans), May 1994.

[Golding1995] Richard Golding, Elizabeth Shriver, Tim Sullivan,
and John Wilkes. Attribute-managed storage. Workshop on
Modeling and Specification of I/O (San Antonio, TX), 26
Oct. 1995.

[Karlsson2004] Magnus Karlsson, Christos Karamanolis and
Xiaoyun Zhu. Triage: performance isolation and
differentiation for storage systems. International Workshop
of Quality of Service (IWQoS'04, Montreal, Canada), pp. 67-
74, June 2004.

[Keeton2004] Kimberly Keeton, Cipriano Santos, Dirk Beyer,
Jeffrey Chase and John Wilkes. Designing for disasters. File
and Storage Technologies (FAST’04, San Francisco, CA),
March-April 2004.

[Keeton2004a] Kimberly Keeton and Arif Merchant. A
framework for evaluating storage system dependability.
International Conference on Dependable Systems and
Networks, (DSN’04, Florence, Italy), June-July 2004.

[Keeton2006] Kimberly Keeton, Dirk Beyer, Ernesto Brau, Arif
Merchant, Cipriano Santos and Alex Zhang. On the road to
recovery: restoring data after disasters. European Systems
Conference (EuroSys’06, Leuven, Belgium), pp. 235-248,
April 2006.

[Ruemmler1994] Chris Ruemmler and John Wilkes. An
introduction to disk drive modelling. IEEE Computer
27(3):17-28, March 1994.

[Saia2001] Jared Saia, Eric Anderson, Joe Hall, Jason Hartline,
Michael Hobbes, Anna Karlin, Ram Swaminathan, and John
Wilkes. An experimental study of data migration algorithms.
Algorithm Engineering, the Proceedings of WAE 2001: 5th
Workshop on Algorithm Engineering (BRICS, University of
Aarhus, Denmark), August 2001). Published as Springer-
Verlag Lecture Notes in Computer Science 2141, pp. 145-
158, August 2001.

[Shriver1996] Elizabeth Shriver. A formalization of the attribute
mapping problem. Technical report HPL-SSP-95-10 revision
D, HP Laboratories, July 1996.

[Shriver1998] E. Shriver, A. Merchant, and J. Wilkes. An
analytical behavior model for disk drives with readahead
caches and request reordering. Int’l. Conf. on Measurement
and Modeling of Computer Systems (SIGMETRICS), pages
182–91, June 1998.

[TPCD1995] Transaction Processing Performance Council, TPC-
D benchmark, April 1995. http://www.tpc.org/tpcd.

[Toyoda1975] Y. Toyoda. A simplified algorithm for obtaining
approximate solutions to zero-one programming problems.
Management Science, 21(12):1417–27, August 1975.

[Uysal2001] Mustafa Uysal, Guillermo A. Alvarez, and Arif
Merchant. A modular, analytical throughput model for
modern disk arrays. 9th Int’l Symposium on Modeling,
Analysis and Simulation of Computer and
Telecommunications Systems (MASCOTS’01, Cincinnati,
Ohio), pages 183-192, August 2001.

 [Varki2004] Elizabeth Varki, Arif Merchant, Jianzhang Xu and
Xiaozhou Qiu. Issues and challenges in the performance
analysis of real disk arrays. IEEE Transactions on Parallel
and Distributed Systems (TPDS) 15(6):559-574, June 2004.

[Wang2007] Yin Wang and Arif Merchant. Proportional share
scheduling for distributed storage systems. File and Storage
Technologies (FAST‘07, San Jose, CA), February 2007.

[Ward2002] Julie Ward, Michael O'Sullivan, Troy Shahoumian,
and John Wilkes. Appia: automatic storage area network
design. File and Storage Technologies (FAST‘02, Monterey,
CA), pp. 203-217, January 2002.

[Wilkes1989] John Wilkes. DataMesh --- scope and objectives.
Technical report HPL-DSD-89-37rev1, HP Laboratories,
July 1989.

[Wilkes1990] John Wilkes and Raymie Stata. Specifying data
availability in multi-device file systems. 4th ACM-SIGOPS
European Workshop (Bologna, Italy), September 1990,
published as Operating Systems Review 25(1):56-59, January
1991.

[Wilkes1996] John Wilkes, Richard Golding, Carl Staelin, and
Tim Sullivan. The HP AutoRAID hierarchical storage
system. ACM Transactions on Computer Systems 14 (1):108-
136, February 1996.

