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Abstract 
Information quality (IQ) is a measure of how fit information is for 
a purpose.  Sometimes called Quality of Information (QoI) by 
analogy with Quality of Service (QoS), it quantifies whether the 
correct information is being used to make a decision or take an 
action. Not understanding when information is of adequate quality 
can lead to bad decisions and catastrophic effects, including 
system outages, increased costs, lost revenue – and worse. 
Quantifying information quality can help improve decision 
making, but the ultimate goal should be to select or construct 
information producers that have the appropriate balance between 
information quality and the cost of providing it.  In this paper, we 
provide a brief introduction to the field, argue the case for 
applying information quality metrics in the systems domain, and 
propose a research agenda to explore this space. 

Categories and Subject Descriptors 
H.3.4 [Information storage and retrieval]: Systems and 
Software. 

General Terms 
Management, Measurement, Performance, Design, Reliability, 
Experimentation. 

Keywords 
Information quality, IQ, QoI, data quality, uncertainty, prediction, 
modeling, information processing pipeline, goal-directed design. 

1. INTRODUCTION 
Automated earthquake monitoring systems can trigger actions that 
are designed to mitigate damage if the event is real: closing 
pipelines, shutting down nuclear reactors, and evacuating schools 
[Grasso2005]. A false alarm can cost millions of dollars. 
A special offer mailed from a pizza chain to the top 20% of its 
customers missed its revenue target by $0.5M because of bad 
customer data.  An attempt to fix the problem purged 2% of the 
best customers from their database [Dravis2002].  
In 1999, NATO bombed the Chinese embassy in Belgrade, killing 
three people, because a faulty strike planning process failed to 
catch the use of inaccurate positioning data [Wikipedia2008]. 
Half of the reports from a monitoring application on PlanetLab 
differed from the true state of affairs by more than 30% 
[Jain2008]. 
In trying to achieve a guaranteed quality of service for a 
transaction-processing application, blindly turning on full 
performance monitoring doubled the CPU load, preventing the 
performance target from being met [Agarwala2006]. 
As these examples show, knowing whether information is good 
enough matters because poor information can lead to bad results, 
but good information may be costly to acquire.  Despite such 

consequences, the systems community largely ignores information 
quality, despite paying a great deal of attention to quality of 
service (QoS).  The goal of this paper is to introduce the field of 
information quality to the systems community, and suggest ways 
it can be measured, used, and designed for.  Our hope is that this 
will help information quality receive the attention it is due. 
Information quality (IQ) assesses fitness for use.  That is, IQ 
measures whether information is good enough for the purpose to 
which it is put, such as making a decision. How good does IQ 
need to be? The answer depends on how the information will be 
used. For example, the ability to make better business decisions 
from fresh, accurate, and complete information is what pays for 
the multi-billion dollar Enterprise Data Warehousing business.  At 
the same time, the Web has taught us that “good enough” 
information is often immensely valuable, and that perfection is not 
necessary for usefulness.  
Just as with QoS, having insufficient information quality can be 
costly.  But obtaining high information quality can also be costly, 
and it may be unnecessary. Making this tradeoff correctly is a 
recurring theme in what follows. 

1.1 Related work overview 
Not surprisingly, most work on information (or data) quality has 
taken place in the database, decision analysis and business 
domains.  For instance, Trio [Widom2009] and BayesStore 
[Wang2008b] are database systems that support data uncertainty 
as first-class entities.  [Aggarwal2009] and [Dalvi2007] offer 
surveys of database-related approaches to the use of uncertain 
data.   
Considerable work has been done on decision making in the face 
of uncertainty (i.e., low information quality), because uncertainty 
is commonplace in the information producers used in science, 
economics, and business.  See [Kahneman1982] for representative 
samples. 
In the business domain, much work is concerned with models for 
IQ assessment and processes to increase the IQ of stored data.  
When businesses calculate the value of information [Harji2009], 
information quality figures prominently [Krishna2009].  There is 
a heavy emphasis on processes that involve people, such as 
change management and qualifying data as it is captured. 
The provenance (or lineage) of a piece of data or information 
describes the process that produced that piece, including the 
original data producers and the processing steps used along the 
way [Beth2005].  Data provenance can be used to determine the 
data’s IQ, and to build trust or believability in the data, but it is 
not per se a measure of information quality [Rajbhandari2008].  
The provenance community is largely concerned with processes 
and tools for gathering, organizing, and querying the data that will 
allow deductions about pieces of information to be made.  We 
believe that provenance and information quality complement one 



 

another, because information quality is just one of the deductions 
enabled by provenance, and provenance data is just one input to 
information quality.  Indeed, there are times when the provenance 
of an IQ assessment is itself important information. 
Several other communities have recognized the value of tracking 
information quality.  For example, experimental datasets used in 
eScience explicitly describe their contents and quality, so that 
information producers and consumers can be matched 
[Preece2008].  Techniques for visualizing the quality of large 
datasets are beginning to appear [Wang2008a].  
On the other hand, there seems to be little recognition of the value 
of information quality in the systems domain.  Consider, for 
example, the lamentable lack of statistical properties for 
measurements such as repeatability, standard deviation, 
confidence limits, and significance in systems papers.  
“Everybody knows” that information quality is important, but few 
of us do much about it! 
There has been some recent progress in the right direction: a 
recent OSDI paper discussed the value of measuring information 
quality for a network-monitoring system [Jain2008].  Bartlet-Ros, 
et al., describe a network monitoring system that sheds excess 
load under extreme traffic conditions, while maintaining 
acceptable traffic query accuracy [Bartlet-Ros2007].  Murty and 
Welsh advocate using the IQ (e.g., harvest and freshness) of 
information producers to drive the development of fault tolerance 
mechanisms in Internet-scale sensing environments [Murty2006].  
In the area of modeling IQ, Cohen, et al., describe a framework 
for calculating confidence intervals for arbitrary combinations of 
aggregation operations with sampling operations [Cohen2008].  
But those studies are rare counter-examples, and represent just the 
first steps towards according IQ its due. 

1.2 Paper outline 
The main contributions of this paper are to present a framework 
on which to hang systems research in IQ, to explain a few of the 
noteworthy research problems, and (hopefully) to encourage 
others to work in this space. 
We believe that making IQ a first-class property like QoS will 
benefit the users of the systems we construct, and open up a range 
of interesting research.  The remainder of this paper discusses 
three parts of a research agenda for Information Quality: 

• Measuring information quality and its effects. 
• Predicting the effects of analyses such as aggregation, 

averaging, “data cleansing”, and correlations between 
multiple producers, on IQ.   

• Automatically constructing an information processing flow 
that meets the needs of a decision-making process. 

2. MOTIVATING EXAMPLES 
In this section we present two examples to illustrate the role of 
information quality. We will use them to illustrate our ideas in the 
sections that follow. 

2.1 System monitoring 
Imagine a large internet service provider that runs many user-
facing applications in several data centers across tens of thousands 
of machines.  Each service provides instrumentation points, many 
of which are capable of generating voluminous data – so much so 
that it is not cost-effective to enable all of them, all the time. 

Calculating and using IQ is made harder by the scale, asynchrony, 
and partial failures induced by the distributed nature of the target 
system.  These issues apply to the monitoring system, as well.  
People monitor the system to look for opportunities to tune it; to 
decide where to bring up new services; to see if it is meeting its 
customers’ needs; and – when things go wrong – to determine the 
cause, so the system can be fixed.   Each of these purposes can 
manage with a different level of information quality: long-term 
trend analysis doesn’t typically need the most up-to-date data, but 
diagnosing a problem is often best done with the most recent 
status information that is available – even if it is too expensive to 
gather in the normal state.  
Information quality-aware approaches can balance the cost of 
gathering data against the benefits of having complete, fresh, 
accurate information for making decisions. 

2.2 Information management service 
Consider a large enterprise seeking to achieve a single-view-of-
customer (SVC) information management system and, from this 
integrated view, drive various search, on-line analytics and 
decision support workloads. To do this, information needs to be 
gathered from hundreds of operational and organizational 
systems, each of which may have its own processes and standards.  
Unstructured and semi-structured information (e.g., word 
processing documents, presentations, spreadsheets and email 
messages) is analyzed to extract descriptive metadata (e.g., 
entities enumerated or quantified, concepts used, categories 
invoked).  Such metadata links seemingly unrelated emails and 
documents in a network of meaning that relates, for instance, an 
irate customer’s email with a support call and a purchase 
transaction. 
A number of IQ criteria arise naturally in this world. Freshness is 
important: producers’ latest information must be reflected in the 
integrated SVC as quickly as possible, suggesting that trickle 
updates or other incremental updating schemes should be used. 
But the text analytics and itemset association queries used in 
statistical data mining perform the best and provide the most 
consistent results when applied to aggregated and indexed 
information, which suggests batch updates. An IQ-based approach 
exposes the trade-off between freshness, consistency and 
performance, and enables algorithmic evaluation of alternatives. 
Tracking IQ for data producers through the system can provide 
users with information about whether the query results they see 
are to be believed.  Many questions arise, including how one 
should obtain an appropriate level of IQ for an important decision.  
This topic is the subject of the framework we present below.  

3. MEASURING YOUR IQ 
Information quality is an assessment of whether information is 
suited for the purposes to which it is put, and IQ metrics provide 
quantitative data to make this assessment.  The metrics can be 
divided into three categories:  standalone, composite, and context-
dependent IQ metrics. 
Standalone IQ metrics are independent of the use the information 
is put to, and can be directly measured by the information 
producer.  They include: how recent is the data? how complete is 
it? how accurate is it? how representative is it (if sampled)?  
For example, in a distributed monitoring or sensor system, 
producers can evaluate the quality of the analyses performed by 
measuring coverage and completeness (e.g., the fraction of nodes 



 

targeted by and represented in, data-gathering aggregations 
respectively); the freshness of the analyses (from the averaging 
intervals); and the variance of all of these metrics. 
As another example, document producers in an information 
management service may describe a document by enumerating the 
Wikipedia topics it mentions.  This topic vector can be used as an 
input to additional analyses that determine how well the document 
matches a newsletter topic.  The producer can describe the quality 
of its metadata by measuring topic completeness (e.g., whether the 
vector has all topics in the document or only the n most frequent 
ones).  Additionally, the producer can list any data-cleansing 
operations applied, such as topic centrality (which removes 
passing mentions) and disambiguation (e.g., deciding whether 
ambiguous words like ‘party’ indicate a legal, political or social 
topic). 
Composite IQ metrics are measured across multiple producers.  
For example: is this data producer unique, or is there a duplicate 
copy obtainable elsewhere?  Do these two producers agree (e.g., 
the strength of correlations or duplicate coverage between them)? 
Do we know the information’s provenance? Is it auditable? Which 
producer should be trusted more for the desired purpose? 
For example, the information management service can calculate 
the relative prevalence of a document’s frequent topics versus the 
topic frequencies in a larger corpus.  This is often done using a 
measure known as TF-IDF (term frequency inverse document 
frequency), which allows the most salient topics to be identified.  
IQ can be represented by a metric indicating what portion of the 
corpus has been used to calculate the TF-IDF score.  For instance, 
when looking to distinguish between subtle aspects of antitrust 
law, all legal documents or all antitrust documents may be a more 
appropriate background corpus than the entire corporate corpus. 
Context-dependent IQ metrics can only be calculated relative to 
the context and needs of the information consumer.  They 
generally cannot be evaluated by looking solely at a single 
information producer. 
For example, a consumer trying to diagnose system problems will 
evaluate IQ using metrics such as the latency and the false-
positive and negative rates that result from the analyses used in 
detection and diagnosis.  In the area of search, end users want to 
understand the relevance of their search results, and typically use 
precision and recall versus a stated information need (e.g., a 
keyword search).  Precision measures the accuracy of the results 
(fraction of results that are correctly identified), and recall 
measures the completeness of the results (fraction of true matches 
that are identified). Other context-dependent IQ metrics are more 
desirable but harder to quantify, such as whether information is 
aptly targeted to the user’s context, actionable, trustworthy, or 
privacy-preserving (even when combined with other data). 

3.1 Research challenges 
Our basic observation is that unless systems explicitly track their 
information quality, consumers of the information they provide 
cannot make judgments and decisions with high confidence.  
Information providers don’t have to provide perfect IQ, but they 
need to be explicit about what IQ they do provide.  Thus, a first 
research challenge is in providing lightweight, scalable 
mechanisms for quantifying IQ. 

A second challenge is the need for common definitions of 
important metrics.  All too often, these are composed anew each 
time information quality is considered.  A consistent, standardized 
set of IQ metrics would help achieve common tools, better 
understanding, and simpler and more consistent reporting. 
Consumers need to determine which IQ metrics (and what values) 
are appropriate for their purposes (e.g., decision-making, taking 
action) and resist the urge to use ill-suited metrics just because 
they are easy to measure.  A resulting research challenge is 
mapping between meaningful consumer-oriented IQ metrics and 
easy-to-measure producer-oriented IQ metrics.   
For example, provisioning decisions for peak usage might rely on 
a monitoring system that drops measurements under heavy load; 
being unaware of this behavior is likely to lead to end-user 
dissatisfaction.  Availability metrics that have poor coverage are 
likely to omit precisely the systems experiencing the most 
difficulties, leading to inappropriate system-management 
responses.  
It is often more straightforward to measure IQ than to predict it a 
priori.  This approach has the advantage of adapting to changes in 
the underlying source’s behavior.  But which IQ metrics should be 
generated?  By analogy with performance monitoring for 
diagnostics [Cohen2004], machine learning techniques could 
allow the choice of IQ metrics to be determined dynamically, with 
the goal of reducing the amount of duplicate IQ information 
reported or maximizing its predictive value.  
IQ-driven tools that build models of data producer can produce a 
much higher fidelity description by automatically dividing the 
description into different time periods [Kiernan2009]. In turn, this 
requires downstream tools that can handle varying-length periods. 
Once IQ can be measured effectively, a further challenge is 
understanding whether and how much IQ matters, by evaluating 
how sensitive decisions are to the IQ of the input parameters.  For 
example. in one system for automated failure diagnosis, noisy 
monitoring data reduced the effectiveness of diagnosis techniques 
by as much as a factor of four [Duan2009].  To perform such an 
experiment, one must have a system with quantifiable output 
metrics (e.g., number of missed deadlines for a scheduling system 
or resource utilization for a capacity planning system), and a gold 
standard for these metrics, against which to compare.  An open 
question is whether to inject statistical (e.g., Gaussian) noise or 
context-specific noise (e.g., consistent over-prediction of values) 
into each input. 
A final research challenge is determining what IQ is “good 
enough”.  To address this question, consumers might combine 
machine learning and information retrieval techniques to calculate 
IQ signatures, keeping track of acceptable and unacceptable 
values, so that they can easily be identified when observed in the 
future, as in [Cohen2005].  

4. PREDICTING YOUR IQ 
Since most data will be transformed before it is used – e.g., by 
averaging, sampling, aggregation, cleansing, merging, indexing, 
caching, and correlating with other producers – it’s not enough to 
measure information quality only at a data producer.  It’s also 
necessary to understand the IQ of the transformed data. 



 

A good way to think about this problem is to consider the IQ of 
different stages of an information processing pipeline, or directed 
graph (DAG).  Figure 1 shows a small sample of the components 
or building blocks that might be found in such a graph.  These 
building blocks can be implemented in many ways, including 
modules within a single (potentially distributed) application or as 
services in a service-oriented architecture. 
Each processing step transforms one or more inputs into a new 
data producer, with a new set of IQ metrics.  For example, 
averaging elements in a time series across non-overlapping time 
windows may increase predictive quality, but lower freshness; 
smoothing a noisy producer can improve usability at the expense 

of eliminating potentially significant outliers; and correlations can 
improve believability at the expense of filtering out potentially 
useful material. Different algorithms or parameter settings may 
have different costs (e.g., resources used) and produce different 
results (e.g., over different averaging intervals or different 
fractions of nodes contained in a spatial aggregate).   
Distributed diagnostic tools monitor the performance of 
applications and infrastructure devices by collecting a variety of 
time series observations, including low-level CPU, disk and 
network performance metrics; energy consumed; system logs and 
application logs.  Unfortunately, collecting large quantities of data 
is expensive, so there is pressure on administrators to gather as 
little data as possible, or to subset it as quickly as possible.  To 
limit collection costs, administrators will configure parameters 
such as the frequency of gathering and reporting metrics, the 
choice of which nodes are instrumented, and the rate of sampling 
employed (e.g., 5 minutes out of every hour or every nth request).  
Experience has shown that system monitoring data is often noisy, 
so administrators often apply data scrubbing to remove missing, 
duplicate and out-of-bounds observations [Arlitt2005].  Once this 
has been done, it is possible to do trend analyses, aggregate 
multiple data producers together (e.g., all machines in a rack or 
site), and correlate information across multiple producers (e.g., 
low-level infrastructure observations and application-level logs) to 
classify anomalous behavior [Cohen2004].  The cleaning, 
aggregation, and analyses performed on those data streams often 
dictate how successful the diagnostic tools are going to be.   
Administrators can maximize the diagnostic abilities they achieve 
from their analyses while minimizing data collection costs only by 
knowing just how IQ will vary.  Figure 2 illustrates some typical 
tradeoffs.  For example, if sophisticated and hence costly analyses 
are performed to predict a value, then predictability will increase, 
as the freshness of the predictions decreases.  Similarly, as more 
information producers are consulted (e.g., to compute an average 
or to determine the correlation between producers), the 
believability of the estimate increases, at the expense of increased 
computational costs and decreased freshness.  Increases in 
believability may be dramatic for the first few producers 
consulted, but eventually reach a point of diminishing returns. 
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Figure 1: an information flow view 

  
Delay

IQ

Predictability Freshness  

0 1 2 3 4 5

# sources

IQ

Believability Computation cost Freshness  
 

Figure 2: some typical IQ tradeoffs 



 

The modeling and measurement community provides techniques 
that have been used to address some related challenges – it 
remains to be seen whether they can provide the breadth of 
coverage that’s needed for a general IQ solution.  For instance, 
active probing and fitness models (e.g., [Mesnier2007]) may 
prove useful for measuring the IQ of a single DAG component.  
Work in the systems community on end-to-end tracing of requests 
in distributed environments may provide insights into methods for 
effectively tracking end-to-end IQ.  If the system components are 
well understood (e.g., because access to source code is available), 
then white box techniques (e.g., [Barham2004, Thereska2006]) 
may be effective for directly tracking IQ.  However, if 
components must be treated as a black box, then IQ behavior must 
be observed and/or inferred, as in [Aguilera2003].   

4.1 Research challenges 
We need to be able to predict the effects of data analysis on IQ if 
we are going to understand how to use the transformed data.  
Doing so requires the ability to model the IQ effects of each of the 
components in a processing DAG.   
Additionally, because we are trying to predict the effect of a 
complete processing pipeline, we need the ability to compose 
these IQ models in order to estimate the IQ of the pipeline’s 
output, not just the original data. 

5. GETTING THE IQ YOU WANT 
Our ultimate goal is to provide end users with the information 
quality that they need.  This goal will require choosing the 
appropriate set of information producers. A single producer may 
provide the desired IQ directly.  However, if that’s not the case, it 
may be necessary to use multiple producers to increase confidence 
in the result.  It may also be necessary to change the parameters 
used by a producer in order to request different amounts of data: 
[Agarwala2006] describes a system where the amount of 
monitoring data being gathered can be increased or decreased, 
allowing a tradeoff between completeness, freshness, coverage, 
and collection cost.  Finally, it may be possible to combine new 
data with old, for trend analysis and anomaly detection.   
For example, a distributed monitoring and control system might 
contain two disjoint information processing pipelines, which can 
be combined in different ways to achieve different goals.  The 
monitoring-centric pipeline collects frequent observations, which 
allows it to identify outliers that may indicate problems.  
However, because it generates such a high volume of data, it does 
not keep old observations.  A control-centric pipeline collects 
observations that are aggregated over longer time intervals, and 
stores them to permit trending analysis.  These pipelines can be 
combined in different ways to achieve different goals.  If the 
control system detects a problem, it could use observations from 
the more intensive monitoring system to permit a more detailed 
diagnosis of a problem.  Similarly, if the monitoring system 
experiences false positive rates that are too high, it could leverage 
the smoothing provided by the control system’s information 
processing pipeline to increase its confidence in reporting a 
problem. Deciding which of these techniques to use and how to 
configure them should be determined by the effects on the IQ of 
the result. 
In the context of the information management service, combining 
different analyses may yield better results than using any one 
method alone.  Topical search is often used as a method of 
defining classes over documents. Methods of classification range 

from purely statistical to strongly linguistic and inferential, each 
with its own IQ strengths and weaknesses. While the statistical 
approach considers only how frequently a topic is mentioned (e.g. 
the phrases evidence and predatory intent), the linguistic approach 
focuses on specific arrangements of related topics (e.g., evidence 
of predatory intent), and the inferential approach identifies chains 
and DAGs of such relationships (e.g., manipulating prices  
thwarting competition  evidence of predatory intent). As in the 
monitoring example, deciding which methods to use and how to 
combine them should be driven by their effects on the IQ of the 
results.  For example, these methods could be combined in a 
voting approach with a committee of classifiers to improve the 
overall IQ of the topical search.   

5.1 Research challenges 
We believe the third set of research challenges is in automating 
the design of DAGs that deliver a target IQ.  Designing a DAG 
requires working backwards from a target IQ and the IQ metrics 
of the available producers.  It includes picking the topology of the 
DAG and selecting the components and their configurations.  And 
it needs to minimize costs such as collection, processing, and 
storage overheads, while still conforming to security, privacy, and 
auditability requirements.   
Today, processing pipelines are typically constructed using rules 
of thumb (e.g., “scrub data before aggregating it”), or a semi-
exhaustive search (“let’s try this combination first”).  They tend to 
work forwards from the data available, rather than backwards 
from a goal.  To automate the process of reliably delivering a 
target IQ level, we must find ways to: 
1. discover information producers that provide the necessary 

IQ, which may include characterizing new producers, 
2. explore alternative processing pipelines/DAGs, using the 

predictive models described in Section 4, 
3. select one that produces the desired information quality while 

satisfying other constraints, and 
4. deploy the resulting design. 

 
Two key components of this approach are the ability to model a 
tentative solution, and the ability to explore the design space 
efficiently. Both are significant research challenges. 

6. SUMMARY 
Understanding the quality of the information used to make 
decisions matters; without it, inappropriate decisions can all too 
easily be made on poor data, with a range of adverse 
consequences.   
In this paper, we have presented a model for how to think about 
information quality in the systems context, identified some 
common IQ metrics, highlighted the importance of predicting and 
modeling the IQ that an information-processing system or service 
stack will produce, and suggested a challenging end-goal of 
automatically constructing information pipelines to meet given IQ 
goals.  We believe that the benefits are real, and the research 
problems are both challenging and tractable.  We hope other 
researchers will join us in exploring this field. 
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