Q Im g d

Cluster management at Google

john wilkes

Faculty Summit, 2011-July-14
johnwilkes@google.com

Google

Cluster management: what is it?

* A fleet of machines live in datacenters
placed in different regions & countries

Google

Cluster management: what is it?

* A datacenter contains 1 or more clusters,
and has a network and a power topology

E>

=
f
machine

|
1) ‘
i
{11
W34

cluster

rack: 40-80 machines
+ Ethernet switch Google

Cluster management: what is it?
e Clusters are managed as 1 or more cells

— Each cell has a (replicated) central manager
— Each machine has a local agent

Google

Cluster management: scale

* Scale => “Your storage system pages you because
there are only a few Petabytes of free space left”

-- Luiz Barroso

Goc)g[e

Cluster management: jobs

* Users submit jobs to a cell, comprising one or
more tasks

* Jobs & tasks have requirements
— resource shape (e.g., how much CPU, RAM, ...)
— constraints (e.g., machine type, external IP)
— software to run (“package”)
— preferences

Goc)g[e

Cluster management: jobs

* services; e.g., user-facing (latency-sensitive)

batch; e.g., MapReduce (throughput sensitive)

up to thousands of tasks

run for few seconds to many weeks

— important or not
— one-off or periodic
— standalone or coprocessor (e.g., BigTable)

— inter-job dependencies
Google

Cluster management: other stuff

Machine lifecycles
— provisioning; testing; repairs; upgrades

Software lifecycle
— e.g., OS install + upgrades + downgrades

Cluster maintenance
— Planned Change Requests (PCRs)
— scheduling; draining; restoring

Monitoring (stats, events, usage, ...)

Google

Cluster management: faults ®

99-99.9% Internet availability

>1% Rate of uncorrectable DRAM errors/machine/year
2-10% Annual failure rate of disk drives

~2 Machine crashes/year

>1 Power utility events per year

A 2000-machine service sees >10 machine
crashes per day

* Main causes of service outages: networking,
power, “oops”
— rarer events: wild dogs, sharks, dead horses,

copper thieves, drunken hunters, ...
-- Luiz Barroso (GO)g[e

Cluster management: goals

1. run everything :-)
2. high utilization
3. predictable, understandable behavior

— fine control for the big guys (resource efficiency)
— ease of use for others (innovation efficiency)

4. keep going (failure tolerance)

... all at large scale, with low operator effort

Goc)g[e

Cluster management: goals

* Q: why not energy/power?

* A: we do care about energy/power
proportionality.

Google

Cluster management: goals

* Q: why not energy/power?

* A: we do care about energy/power
proportionality.

* But..
— best way to save energy is to write good software
— Google PUE was 1.13 in Q172011 (3-month weighted average)
— don’t buy idle machines!
— dispersed storage => hard to turn machines off

— complex interactions with failures
Google

Cluster management: pre-Omega

e Current system was built 2003-4
* Works pretty well ©

e But: beginning to run out of steam ...
— scale (largest clusters)
— inflexibility (ease of adding new features)
— internal complexity (ease of adding new people)

GOUS[E

(Omega

* The second system ...
* Main user goals: predictability & ease of use
* Main team goal: flexibility

e Caveat: Omega is currently being prototyped
— not in production!
— many things will change!
— it may never be deployed!

GOUS[E

(Om ga the general approach

(@)
3
®
Q
)

»
.§Eo> o | © o @ 4§
= o | = (&) —
5l 3@ 5| | B ES|| &
w|© ©ol | = c ol | E
—la > @ (8] 0 =
©] |/ -
(3] —
MDB
~——
m——
h
LCUbeJ s L L L 2
ST s
DNS =1=— Agents 1= —
S o o o 1o 1< |
Google

(Om ga the general approach

* Dedicated “verticals” for different needs
— services, batch, machine management

* Central shared state
— calendar of allocation decisions
— minimal necessary data
— no policies; just enforces invariants
* Failures are a first-class property
— the resource model

Google

Omega issues: intentions

* Avoid detailed specifications of how

— not: “place 40 tasks on that rack, 20 on this one”
to achieve failure tolerance

— not: “I need 4.6 CPUs of processor type p1”
to achieve adequate throughput/latency

e But ... what to say instead?
— goal (SLO) specifications

Google

Omega issues: failure tolerance

* Goal: limit the number of concurrent outages

— topology-aware scheduling
(multiple topologies? competing objectives?)

— surety: quantify likelihood of resources being available

* Detection
— real fault, or just lost touch?
— time to detect vs. false positives
— correlated failures

Google

Omega issues: master scalability

e Calendaring
— super-efficient “does it fit?” checks

— scheduling horizon? edge effects?

* Multiple scheduler verticals
— livelock / mutual interference
— optimistic concurrency?
— what needs to be communicated?

Google

Omega issues: predictable behavior

In the machine —n—— _

* normalized performance
(CPU, memory/NUMA)

* performance isolation
(caches?)

» storage (especially disk 1/0):

| I .

| I\ l 4 i (!

need both low-latency and TI'!:M "'w ﬁ" w)j " \ﬁ"h-"LHm*‘"!\r\)- mwm\.)h
Wit 2 AT b N A - Madagih .-“h, A\ e I

high-bandwidth
* security isolation (PII, SOX)

>

Google

Omega issues: predictable resources

In the master
— “why was my job not scheduled?”
— “where should | provision a new service?”

— admission control?

All Products, United States Traffic Divided by Worldwide Traffic and Normalized

e Fraction of Worldwide Traffic, Normalized 86.54 | July 10, 2011 8:30:00 PM GMT-07:00
luu
A 80
60
40
20
0
1 1 1 1 1 1 1 1 [1 1
Jul 2 Jul 3 Jul4 Juls Julé Jul 7 Jul 8 Jul 9 Jul 10 Jul 11 Jul

Omega issues: objectives

e SLOs and SLAs
— what can/should be offered?
— how can they be controlled for at runtime?
— handling evolution

* Objective functions

— is “fairness” useful/important?
(reality is more complicated)

Goc)8[6

Omega issues: ease of use

e Can we simplify things for the little guy?
— “here’s a binary ... run it”
— predictions based on prior history may help

e But ... how to specify (or infer):
— good behavior
— dependencies
— the degrees of control freedom

Google

Omega issues: cell management

e are we in trouble?
* are we about to get into trouble?

* what should we do about it?
— “it’s 3am and your pager goes off ...”

Google

Configuration

* Make an app work right
for one instance: simple

— Google Docs uses ~50 systems
and services

* Make an app work right
in production: priceless
— run it in half a dozen cells
— release a new version
— fix it on the fly in an emergency
— move one copy to another cell

http://melinathinks.com

Google

Summary

(Omega

* Large-scale systems have some fun problems

* Configuration may be the next big challenge

Google

