Making Commercially-Sensitive Workloads Safe to Release

Charles Reiss (UC Berkeley)

John Wilkes (Google)

Joseph L. Hellerstein (Google)

Motivation

We had a cluster scheduler trace

- Machines and their availability
- Jobs submitted by users composed of many tasks (request to run a VM)
- Resource requests and usage (per task)
- When/where each task was started and stopped

Enables new research:

- Batch + interactive together
- Research needs realistic example

Obstacles to releasing traces

Privacy

Competitive concerns

Privacy

"information ... that can be used to contact or identify [any user]"

Regulatory restrictions

Subject of most prior work:

- (De)anonymizing Netflix prize
- Researching health info legally

Quote: Quantcast privacy policy

Competitive concerns

"could be used to hurt the company"

- Info sensitive for X, Inc.
 may be in press releases for Y, Inc.
- Examples:
 - Performance/capability numbers
 - Competitors could compare
 - Supply chain issues:
 - Committed to certain devices

Goal

Select a version of the raw workload that is safe to release

Obfuscating the workload

Why is obfuscation hard?

- Outside data sources
 - Zip code + Date of Birth

- Some aggregates are sensitive
 - Total number of users, machines, etc.

Obfuscation techniques

Transform

preserve equality/order/etc.

Subset

representative, not complete

Aggregate

provide only summaries

Transforming

- Choose what users need to do
 - "check equality"
 - "check if less/greater"
- Each datatype independently
- Choose parameters neutrally
 - e.g. maximum value becomes 1; not "random" scaling factor

Example: Task constraints

e.g. "foo_version >= 143"

Specify machines that can run task

Allow

comparing attribute values only

Example: Task constraints

Solution:

- foo_version becomes MAC(secret, foo_version)
 - secret only used for this purpose

- For each attribute:
 - sort values that actually appear
 - rename values 1, 2, 3, ...

Can we allow:

- Summing CPU usages and comparing to capacities
 - effectively requires linear scaling

but **not** allow?

discovery of machine core counts

No transformation that allows summing usages will avoid revealing "1 core"

Compromise:

- Choose subset of machines for which revealing core count is okay
- representative of the workload type

Example: Job purpose

Applications with different performance goals

Researchers want the **semantics** of jobs

Internally: job names + user names

Manually label 1000s of job names??

Example: Job purpose

Compromise:

- Scheduler parameters
 - priority, latency-sensitivity
- Extra measurements
 - CPI, memory traffic

... but no way to *verify* purpose

Aggregation

- Summaries only
 - e.g. 5/25/50/75/95th percentiles
- Good for privacy
- But need to choose what's important
 - We didn't really know

Conclusion

- Releasing useful traces is hard
- Privacy isn't enough
- Be systematic
 - Choose what trace users should do
- Subsetting often more useful than field-byfield transformations
- No free lunch ... but we got a trace.

