Making
Commercially-Sensitive Workloads
Safe to Release

Charles Reiss (UC Berkeley)
John Wilkes (Google)

Joseph L. Hellerstein (Google)

Motivation

We had a cluster scheduler trace

* Machines and their availability

e Jobs submitted by users composed of many
tasks (request to run a VM)

* Resource requests and usage (per task)

* When/where each task was started and
stopped

Enables new research:

 Batch + interactive together

* Research needs realistic example

Obstacles to releasing traces

Privacy

Competitive concerns

Privacy

"information ... that can be used to contact or
identify [any user]”

Regulatory restrictions
Subject of most prior work:

— (De)anonymizing Netflix prize
— Researching health info legally

Quote: Quantcast privacy policy

Competitive concerns

"could be used to hurt the company"

* |nfo sensitive for X, Inc.
may be in press releases for Y, Inc.
 Examples:
— Performance/capability numbers
 Competitors could compare
— Supply chain issues:
e Committed to certain devices

Goal

Select a version of the raw workload
that is safe to release

Obfuscating the workload

Why is obfuscation hard?

e Qutside data sources
— Zip code + Date of Birth

* Some aggregates are sensitive
— Total number of users, machines, etc.

Obfuscation techniques

* Transform
— preserve equality/order/etc.

e Subset
— representative, not complete

* Aggregate
— provide only summaries

Transforming

* Choose what users need to do
— "check equality”
— "check if less/greater”

 Each datatype independently
* Choose parameters neutrally
— e.g. maximum value becomes 1; not
"random" scaling factor

Example: Task constraints
e.g. "foo_version >= 143"
Specify machines that can run task

Allow
e comparing attribute values only

Example: Task constraints

Solution:
* foo version becomes MAC(secret, foo version)
— secret only used for this purpose

* For each attribute:
— sort values that actually appear
— rename values 1, 2, 3, ...

Example: CPU usage

Can we allow:

 Summing CPU usages and
comparing to capacities

— effectively requires linear scaling

but not allow?
* discovery of machine core counts

Example: CPU usage

= R
= R
- R
s R
= R

=
-
s
T
|

-
<
L)
!
|

portion of samples
—
-
N
|
|

CPU rate

Example: CPU usage

10°

-
<
—

portion of samples

0.5 1.0 1.5 2.0 2.5
CPU rate

Example: CPU usage

No transformation that allows summing usages
will avoid revealing "1 core"

Compromise:

* Choose subset of machines for which
revealing core count is okay

* representative of the workload type

Example: Job purpose

Applications with different performance goals
Researchers want the semantics of jobs
Internally: job names + user names

Manually label 1000s of job names??

Example: Job purpose

Compromise:
 Scheduler parameters

— priority, latency-sensitivity
* Extra measurements

— CPI, memory traffic

... but no way to verify purpose

Aggregation

* Summaries only
— e.g.5/25/50/75/95th percentiles

* Good for privacy

* But need to choose what's important
— We didn't really know

Conclusion

* Releasing useful traces is hard

* Privacy isn't enough

* Be systematic
— Choose what trace users should do

* Subsetting often more useful than field-by-
field transformations

* No free lunch ... but we got a trace.

3500

3000

2500

2000

1500

1000

task events per minute (1-day moving avg.)

500

T T T T

— production+ initial submissions
|| — other initial submissions

| | — production+ resubmissions

—— other resubmissions

logl0(task days) ¢
-

10 15 20 25 20

Memory (normalized units)

6000

5000

4000

3000

2000

1000

0

Memory reservation (hourly moving average)

0 5 10

https://code.google.com/p/

googleclusterdata/

4000

Memory (normalized units)

1000

3000

2000

number of jobs

number of jobs

[lIIIIIlillllIIIIIIIIlIIIIII’IIIIIIIIIIIIIIIIIIIIIIIIII

il

priority 11
monitoring (10)
production (9)
other (2-8)

free (0-1)

Memory capacity |

10 ‘ 1 ,
10° 10°
—task count
10
10° | I ‘ I
10 | ’ ‘
10 1 | ‘ .‘ .’\ 1 " ‘
0.00 0.05 0.10 0.15 (
memory request (per task)
10*
10° ‘ ’ ”
* H | | \
101 | ‘ 1 .[Jl l ‘1 Al
0.00 0.05 0.10 0.15 (

CPU request (per task)

il

