
DieHard: reliable scheduling to
survive correlated failures in cloud data centers

Mina Sedaghata, Eddie Wadbroa, John Wilkesb, Sara De Lunac, Oleg Seleznjevc, and Erik Elmrotha

a Dept. of Computing Science, Umeå University, Sweden, {mina, eddiew, elmroth}@cs.umu.se
b Google Inc., johnwilkes@google.com

c Dept. of Mathematics and Mathematical Statistics, Umeå University, Sweden

{sara.de.luna, oleg.seleznjev}@math.umu.se

Abstract—In large scale data centers, a single fault can lead
to correlated failures of several physical machines and the tasks
running on them, simultaneously. Such correlated failures can
severely damage the reliability of a service or a job.

This paper models the impact of stochastic and correlated
failures on job reliability in a data center. We focus on corre-
lated failures caused by power outages or failures of network
components, on jobs running multiple replicas of identical tasks.
We present a statistical reliability model and an approximation
technique for computing a job’s reliability in the presence of
correlated failures.

In addition, we address the problem of scheduling a job with
reliability constraints. We formulate the scheduling problem as an
optimization problem, with the aim being to achieve the desired
reliability with the minimum number of extra tasks. We present a
scheduling algorithm that approximates the minimum number of
required tasks and a placement to achieve a desired job reliability.
We study the efficiency of our algorithm using an analytical
approach and by simulating a cluster with different failure
sources and reliabilities. The results show that the algorithm
can effectively approximate the minimum number of extra tasks
required to achieve the job’s reliability.

Index Terms—Cloud computing; Scheduling; Reliability; Fault
tolerance; Correlated failures;

I. INTRODUCTION

Data centers achieve high reliability through the use of fail-

ure tolerant hardware, network equipment, and architectures

or via adopting sophisticated management solutions such as

replication and recovery techniques. Many of these techniques

cope with failures of a single individual component such as

a machine or a software component, rather than providing

overall reliability for jobs or services. However, it is not

generally valid to assume that machines fail independently and

component failures are uncorrelated. Correlated failures such

as failures due to power outages or network component failure

are rare [1] but have significant effects on system reliability

[2], [3], [4], [5], [6]. Ignoring the impact of correlated failures

can cause reliability to be overestimated by at least two orders

of magnitude [2].
In this work we present a statistical model for job reliability

in a cloud data center, in the presence of stochastic and corre-

lated failures. The model quantifies the impacts of correlated

failures on the overall reliability of a job comprising multiple

identical tasks, which can be run in containers [7] or virtual

machines. The job reliability is defined as the probability that

at least a minimum number of tasks will continue running

throughout the job’s runtime. We do this to model batch jobs

that need to have a certain number of workers to finish by

a deadline, or long-running service jobs that need to have a

minimum number of workers to meet some external load, such

as a worst-case query rate.

We specifically focus on correlated failures caused by power

outages and failures of network components. In our model,

power nodes and network components have different failure

rates and their failures affect different sets of machines, known

as failure domains. For example, the machines that are affected

by a power outage will not necessarily be the ones that are

affected by a network component failure [8].
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Fig. 1: A representative power and networking structure for a data-
center. The machines are connected via 120 ToR switches and they
are plugged into to 3 power nodes. A set of ToR switches are backed
up by a redundant switch. All machines are connected to at least
one power node, while half of the machines are also supported by
an extra power node. This topology forms 4 power failure domains
(W1,W2,W3,W4), and 61 network failure domains (R1, ...,R61).

Delivering job reliability cannot be considered indepen-

dently from job scheduling because job reliability is highly

dependent on the placement of the tasks over different failure

domains (e.g. different racks or power failure domains). To

achieve job reliability, scheduling and allocation decisions

should take into account the probabilities of failure for dif-

ferent machines, racks, and other potential failure domains,
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along with the impact of failures in these domains on the job.

Using the proposed reliability model, we introduce a

scheduling algorithm to achieve a given level of reliability for

a particular job. The objective of the algorithm is to achieve

an overall reliability for a job while using the minimum

necessary number of extra tasks (replicas), and to schedule

the job across multiple different failure domains. Scheduling

tasks over different failure domains makes jobs robust against

the negative impact of a single failure, while running extra

tasks enables the job to compensate for losses and deliver the

targeted minimum reliability during recovery.

The scheduling algorithm approximates a minimum number

of required replicas and selects a subset of machines in the

cluster to run replicas of the tasks. Note that replicating a

task within a failure domain cannot prevent it from being

affected by a correlated failure of that domain, no matter

how much redundancy is introduced. Similarly, spreading

allocations over different failure domains alone is not sufficient

to guarantee that the targeted minimum reliability will be

achieved. Therefore, a combination of good placement and

replication is required to ensure high overall reliability.

The contributions of this paper are:

1) A statistical reliability model for a job running multiple

identical tasks, deployed in a cloud data center. The

model captures the impacts of stochastic and correlated

failures due to power or network node failure on job

reliability. We also propose an approximation technique

for estimating a given job’s reliability.

2) A scheduling algorithm to approximate the number of

tasks required to guarantee that a job will achieve the

desired reliability, and to select a subset of machines to

run those tasks.

3) Analytical proofs of the algorithm’s validity and a

simulation-based illustration and evaluation of the al-

gorithm for a cluster with different failure sources and

jobs with different target reliabilities. The evaluation

shows that the algorithm can effectively approximate the

minimum number of extra tasks required to achieve a

job’s reliability.

II. PROBLEM FORMULATION

A job J arrives at a data center and executes a group

of identical tasks [9]. This is a common application model

for datacenters, where multiple tasks (containers or Virtual

Machines (VMs)) are needed to serve the job’s demand. Each

task has an expected compute and memory demand of C and

M, respectively. The job starts at time t1 and runs for time T .

A job is successful if the probability that at least K tasks will

be running at all times during the [t1, t1 +T ] time interval is

greater than or equal to a threshold Smin. In addition to the

required K tasks, a number of extra tasks can be created to

increase the expected probability of success. A set of tasks

may fail (and stop running) simultaneously if they share a

common source of potential failure such as a common power

node or a common network device.

The tasks are deployed in a cluster of physical machines.

Each machine p has an available CPU and memory capacity

of cp and mp, respectively. Machines are connected by a set of

network nodes R̄ and the electrical power is supplied by a set

of power nodes W̄ . Failure of a power node causes failure on

all the associated machines and the tasks deployed on those

machines.

Given a fixed power and network topology, for each job J
with desired number of running tasks K, we want to determine

n, the required number of extra tasks, and x, a placement of

N = K + n tasks on the machines, so at least K tasks are

running at all times during the job runtime, with a certain

probability threshold, Smin. The job reliability is defined as the

probability of the job operating for a certain amount of time,

with at least K running tasks, at all times. In our model, each

machine runs at most one task from each job. Tasks cannot

be restarted and their failures are terminal.

Given a placement vector x representing the distribu-

tion of tasks over different failure domains, and S(x) as

the calculated reliability of the job, the goal is to find

n∗ = min {n | S(x)≥ Smin} during the job’s runtime T , sub-

ject to the relevant capacity constraints.

A. Network and power topology

We model the dependencies among system components as

a 2-level multi-rooted tree, where the leaves are the machines

and the parents are power and network nodes. Each network

component failure disconnects 60 to 120 machines (one or

two racks), whereas a Power Distribution Unit (PDU) failure

leads to the outage of 20 to 60 racks [10]. We assume that the

power and network topology may contain redundancy, where

each machine can be connected to an extra network node or be

supported by an extra power node. In such cases, a machine is

functional as long as at least one power node and one network

node are available to it.

We also define a network failure domain R as the set of

machines that share the same network components and are

thus at risk of a concurrent failure. Similarly, we define a

power domain W as the set of machines that share the same

power nodes.

We define ri as a random binary variable, where ri = 1 if the

network failure domain i is available and running, and ri = 0

otherwise. The network failure domain is available as long as

one network component is functional. Similarly, we define the

random binary variable w j, where w j = 1 if the power failure

domain j is available and w j = 0 otherwise. The power failure

domain is available as long as one power node is functional.

In addition, we define the failure domain Fl , as the set

of tasks deployed in a power failure domain that are also

connected via a single network failure domain. The binary

random variable fl = 1 if at least one network node and one

power node in Fl are operational. Figure 1 shows a data center

topology with respect to network and power failure domains,

showing the redundancies in the system.

The network and power nodes break independently and are

not repairable. The time to failure of each network node during
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a job runtime T is exponentially distributed with a random

failure rate of 0.000022 ≤ λ ≤ 0.000032 per hour, given a

Mean Time To Failure (MTTF) of 3.5 to 5 years. Similarly,

the time to failure of the power nodes (i.e. the PDUs) during a

job with runtime T is assumed to be exponentially distributed

over time with a failure rate of λ = 0.4×10−6 per hour [11].

We also assume that all machines have an identical probability

of hardware failure.

B. The reliability model

To model the impact of correlated failures on reliability, we

specify the probability of each subset of tasks being unavail-

able. Let us assume that xl is the number of tasks running

in a failure domain Fl, x = [x1,x2, . . . ,xL] is the placement

vector of the tasks over the failure domains. The quantity xl
also happens to be the number of tasks that fail when failure

domain Fl goes down. Moreover, f = [ f1, f2, . . . , fL] is a failure

state vector showing the availability or failure of the failure

domains and L is number of failure domains. The number of

running tasks can then be calculated as:

N(f,x) =
L

∑
l=1

flxl (1)

Let

PR(r) = ∏
{i|ri=1}

AR
i (T ) ∏

{i|ri=0}
(1−AR

i (T )) (2)

PW (w) = ∏
{ j|w j=1}

AW
j (T ) ∏

{ j|w j=0}
(1−AW

j (T )) (3)

where PR(r) and PW (w) are the probabilities of network

failure domains and power failure domains for failure state

vectors r = [r1,r2, . . . ,rR] and w = [w1,w2, . . . ,wW ], respec-

tively. In addition, AR
i (T ) and AW

j (T ) are the reliabilities of

network failure domain i and power failure domain j for a

job with T runtime, respectively. The reliability of the job,

S(x) ≥ P(N(f,x) ≥ K), can be calculated as the sum of the

probabilities of all possible combinations of failure events

when the number of running tasks N(f,x) ≥ K. This can be

written as:

S(x) = ∑
{(r,w)|N(f,x)≥K}

PR(r)PW (w) (4)

In this formulation, the component failures are independent of

each other. However, each component failure can terminate all

tasks in one or more failure domains.

C. Approximating the reliability value

In practice, computing the exact reliability value is com-

plex and computationally expensive. Therefore, we propose a

method for approximating the reliability value.

The reliability function S(x) is a step function; it is assumed

that a job’s reliability increases in discrete steps as the number

of extra tasks is increased. However, different types and com-

binations of failures do not necessarily reduce the reliability

value to the same extent. A network node has a much greater

failure probability than a power node, but fewer extra tasks

are required to mitigate the impact of a network node failure.

We reformulate equation (4) as a sum over the total number

of failures in the system. To do this, for i = 0,1, . . . ,R and

j = 0,1, . . . ,W , we define:

Si, j(x) = ∑⎧⎪⎪⎨
⎪⎪⎩
(r,w)|

‖r‖1= R− i
‖w‖1=W − j
N(f,x)≥ K

⎫⎪⎪⎬
⎪⎪⎭

PR(r)PW (w) (5)

In this equation, S0,0(x) is the reliability of the job if none

of the network or power failure domains fail, and Si, j(x),
1 ≤ i ≤ R and 1 ≤ j ≤ W is the probability that the job

has N(f,x) ≥ K tasks, given i network failures and j power

failures. By combining definitions (4) and (5), we get the

following expression for the reliability

S(x) =
R

∑
i=0

W

∑
j=0

Si, j(x) (6)

The probability of failure of multiple components, Si, j(x), de-

pends on the failure probabilities of the individual components,

each of which is small. Considering the probability of failures

of the components in our model, we can argue:

S0,0(x)� S1,0(x)� S2,0(x)� . . .S0,1(x) . . .� SR,W (x) (7)

Therefore, as i and j increase, the improvement in system

reliability, Si, j(x), becomes progressively smaller. There is

thus an optimal number of extra tasks; adding further tasks

above this threshold would not contribute substantially to the

system’s reliability. In other words, as the probability of a

high number of failures during a job’s lifetime decreases, so

too does the need to plan and assign extra tasks to achieve

reliability.

The fact that the reliability function increases in discrete

steps is useful when approximating the reliability value and

estimating the number of extra tasks required to achieve a

given reliability. Each step in the reliability function corre-

sponds to a failure arrangement, (r,w), which specifies the

type and number of failures that the existing arrangement is

sufficient to cover. A desired reliability can then be achieved

by providing the minimum redundancy required to cover the

corresponding failure arrangement.

The approximation becomes essential, because of the com-

putational expense of calculating S(x), which necessitates

calculation of every possible combination of failures that

satisfy N(f,x) ≥ K. To reduce the computational complexity,

we approximate the sum on the right hand side of equation (6)

by discarding the terms Si, j(x) that correspond to failures of

components (i, j) whose probability of failure is negligible

with respect to Smin. This enables us to obtain approximate

reliability values cheap, and also helps us estimate the number

of extra tasks required to prevent failure events that have non-

negligible effects on reliability relative to Smin.
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III. FAULT-AWARE SCHEDULING

To schedule a job in a way that achieves a given reliability,

we must approximate the minimum necessary number of

extra tasks and identify a placement that satisfy the reliability

constraint S(x)≥ Smin. Our approximation algorithm is based

on the discussion in the previous section. We aim to determine

which failures of (i, j) must be compensated for to achieve the

target reliability Smin. Having identified this set of essential

failures, we then provide the minimum level of redundancy

necessary to cover them.

To identify the failures for which it is necessary to provide

redundancy, we implement a decision tree. Each node in the

tree corresponds to a failure of (i, j) network and power failure

domains. For each node of the tree, we estimate the number

of extra tasks required to compensate for the corresponding

failures, n, and approximate the job reliability for the current

arrangement. The algorithm starts at the root of the tree (0,0),

and initially expands along the power branch (0,1). This is

done because providing redundancy for power outages with

appropriate task placement also automatically protects against

some network failures. If the target reliability, Smin, cannot

be achieved by covering for one power failure, no amount of

additional redundancy with respect to network failure would be

sufficient to compensate for this deficiency, so it is necessary to

expand further along the power branch. However, if providing

redundancy for one power failure domain’s failure results

in S(x) > Smin, there is a chance of obtaining the desired

reliability with fewer extra tasks by covering for just some

additional network domain failures. If this is the case, we

expand along the network branch and iteratively increase

the number of possible component failures, (i, j), adding the

necessary redundancy to cover these failures at each step. In

each expansion, we re-compute the new x for new N = K+n
and its associated S(x). We stop at the node that satisfies the

target reliability Smin.

The n values of the last two nodes are the lower and

upper bound estimates of the approximate minimum number of

extra tasks required to achieve S(x)≥ Smin. Having determined

this interval, we can easily approximate the minimum by

performing a bisection search over the n values that satisfy

S(x) ≥ Smin. The number of iterations is limited and small

because the bound is usually limited and small. This algorithm

is outlined graphically in Figure 2 and more precisely in

Algorithm 1.

A. Estimating the number of extra tasks

To estimate the number of extra tasks n, let us first assume

that the desired reliability Smin can be guaranteed by covering

a single network failure domain:

Lemma 1. To provide full redundancy for one network domain
failure, the required number of extra tasks is n =

⌈ K
R−1

⌉
.

Proof. Let N be the total number of deployed tasks for the

job. To ensure that at least K tasks are running if any single

network failure domain fails, at least K tasks must run on

each collection of R− 1 network failure domains. By the
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Fig. 2: Decision tree for identifying the required redundancy level,
for a job with the minimum number of running task K=500 and
minimum target reliability 0.9999.

Algorithm 1 Fault-aware scheduling algorithm

1: procedure SCHEDULING

2: Calculate S0,1(x) assuming n = K
W−1 , i.e. the reliability of a job in the

event of one power failure
3: if (S > Smin) then
4: Branching(S1,0(x)); Expand along the network branch
5: else S < Smin
6: Branching(S0,2(x)); Expand along the power branch
7: end if
8: end procedure
9:

10: procedure BRANCHING(SLevelNetwork,LevelPower(x))
11: if S > Smin then return x
12: end if
13: if LevelNetwork > 0 then
14: calculate n = K×LevelNetwork

R−LevelNetwork
15: x := Schedule Rn tasks equally on R network failure domains,

considering the capacity constraints
16: Sort network failure domains according to their reliability
17: Update x after removing N∗ −N tasks from the least reliable

domains
18: calculate job reliability S
19: else
20: if LevelPower > 0 then
21: calc n = K×LevelPower

W−LevelPower
22: Schedule Wn tasks on W power failure domains
23: Sort power failure domains according to their reliability
24: remove N∗ −N from the least reliable domains
25: calculate job reliability S
26: end if
27: end if
28: if SLevelNetwork, LevelPower(x)< Smin and (LevelNetwork > 0) then
29: Branching(SLevelNetwork++, LevelPower(x))
30: else
31: if S(LevelNetwork, LevelPower)(x)< Smin and (LevelPower > 0) then
32: Branching(SLevelNetwork, LevelPower++(x))
33: end if
34: end if
35: end procedure
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pigeon hole principle [12], at least one of these R−1 network

failure domains has n =
⌈ K

R−1

⌉
tasks. To ensure redundancy,

the remaining R−1 network failure domains must have at least

K tasks, so we need K +n tasks to ensure redundancy.

Furthermore, we need to prove that this setting is realizable.

In other words, we should be able to place K+n tasks over the

R network failure domains such that no domain has more than

n tasks. One straightforward way of doing this is to put n tasks

on each network failure domain, resulting in R
⌈ K

R−1

⌉≥ K+n
tasks in total, and then remove any (Rn)−K−n tasks.

Lemma 2. To provide full redundancy for i > 0 network
domain failures, the number of required extra tasks is nr =
i
⌈ K

R−i

⌉
.

Proof. Lemma 2 is an extension of the statement in Lemma

1. For a job to survive i ≥ 1 network domain failures, we

need for any combination of remaining R− i domains to

have at least K tasks. The simplest way is to assume that

we have the same number of tasks n in all R domains.

Then Rn− in ≥ K or n ≥ K/(R− i), that is when we can

take the smallest number n = �K/(R− i)�, where m = �a�
is the smallest integer number such that m≥ a. Now we obtain

n =

⌈
K

R− i

⌉
≥ K

R− i
↔ Rn≥ K + in. (8)

Therefore, we get the number of extra tasks

nr = in = i
⌈

K
R− i

⌉
. (9)

Using a similar argument, we can conclude that the number

of extra tasks required to provide full redundancy in the event

of j > 0 power failures is nw =
⌈

K j
W− j

⌉
. The only difference

is that deploying nw � nr tasks automatically covers for the

failure of R∗ network failure domains due to the deployment

of a greater number of spare tasks. Using the equation in

Lemma 2, we can find R∗, the number of network domain

failures covered by deploying nw extra tasks:

nw =

⌈
KR∗

R−R∗

⌉
→ R∗ =

⌈
nw

K +nw
×R

⌉
(10)

Therefore, when estimating the increase in reliability it is

necessary to consider the coverage of both the power failures

and R∗ network failure domain failures.

B. Placement Algorithm (DieHard)

In this section, we introduce our failure-aware placement

algorithm, which we call DieHard (DH). To identify a suitable

placement given the failure of (i, j) components, we must

ensure that at least K jobs are running on each combination of

failure domains. One intuitive approach is to evenly assign n
tasks to each domain. Assuming that placement is done over

network failure domains, this results in at most Rn ≥ K + n
tasks in total given the capacity constraints. Next, we can

remove (Rn)− K − n tasks from the assigned tasks. Since

n is derived independently from the failure probabilities of

each failure domain, a lower n can be obtained by removing

the tasks from the failure domains with highest probability

of failure. We continue reducing the number of tasks from

the least reliable failure domains as long as the reliability

condition S(x)≥ Smin holds.

If the placement is to be done over power failure domains,

we first assigns tasks to each power failure domain and then

distribute the tasks over the network failure domains within the

power failure domain to cover the failures of network failure

domains.

IV. EXPERIMENTAL SETUP

We implemented a Java-based simulator to simulate a clus-

ter with 3 power nodes and 9600 machines connected through

120 Top of Rack (ToR) switches. Depending on the types of

machines, a rack can contain between 10 and 80 machines,

and each power node can support between 20 and 60 racks

[10]. For our simulation, we chose racks with 80 machines

and assigned 4800 machines, (60 racks) to each PDU. Each

machine has 4 CPU cores and 16 GB of memory, and a

background load that is a random value uniformly chosen

within the available capacity range. Each ToR switch is backed

up by a redundant switch, as shown in Figure 1. In addition,

half of the machines are connected to two PDUs for a more

resilient power supply. The cluster’s machines are organized

into 61 network failure domains and 4 power failure domains.

A job arrives at the system and runs for T hours. The value

for the T is introduced in the experiments. All tasks have

identical CPU and memory demands, uniformly chosen from 1

to 4 cores for the CPU and 1 to 16 GB for memory. The target

reliability for the job was set to 0.999 or 0.9999, depending

on the experiment.

The results presented below are average values obtained

from 10 separate runs of each experiment.

V. ILLUSTRATION AND EVALUATION

We have already presented an analytical proof of the validity

of our approach for computing the number of required extra

tasks. This section therefore illustrates the impact of replica

count on job reliability, for a typical use case. We also study

the impact of different placement strategies on job reliability

and the required number of extra tasks.

A. Impact of the number of replicas on reliability

As shown in Equation (7), it is not necessary to provide

full redundancy for a job to meet the required reliability

level. By exploiting this property of the reliability model, it

is possible to reduce the complexity of the computations and

facilitate the estimation of the required number of extra tasks.

To illustrate this point, we studied the impact of increasing

the number of extra tasks on reliability. As shown in Table I,

as n increases the improvement in job reliability becomes

progressively smaller and ultimately negligible. The results

also show that there is an optimal number of replicas and

further increasing the number of replicas does not significantly
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increase job reliability. The optimal number increases in a

stepwise fashion and is related to the number of failures that

can be tolerated.

TABLE I: Impact of number of extra tasks on job reliability, K=1000

Extra replicas (n) Reliability Average improvement/replica
0 0.9619771697

16 0.9884874963 1.66×10−3

33 0.9997473744 6.62×10−4

51 0.9999373772 1.05×10−5

70 0.9999376013 1.17×10−8

89 0.9999376019 3.15×10−11

B. Impact of the scheduling strategy

Given a total number of tasks N =K+n, there are a number

of distributions that can satisfy the reliability constraint S(x)≥
Smin. Any distribution is acceptable as long as it guarantees

a total of K tasks running on all possible combinations of

available failure domains. We compare the proposed Diehard
(DH) algorithm to two other intuitive placement strategies. We

observe that, for high reliability targets, some quite intuitive

placement strategies do not necessarily satisfy the reliability

constraints with the approximated number of replicas.

The three placement strategies are:

• DH: The algorithm initially assigns an equal number of

tasks over different failure domains. It then iteratively

removes tasks from the domains with the highest proba-

bilities of failure provided that the reliability constraints

hold.

• Proportional placement: The algorithm distributes the

tasks among failure domains in proportion to their prob-

abilities of failure.

• Highest reliability first (HRF): The HRF algorithm

ranks the domains based on their failure probability. It

then places the tasks in the domains with the greatest

reliability as long as that they have available capacity.

To compare the three algorithms, we use the affinity score
[2] as a metric to measure the likelihood of correlated failures.

Let x = [x1, ...,xl ] be the distribution of tasks over different

failure domains, where x1 ≤ x2 ≤ ... ≤ xl . Let the impact of

the correlated failure be the number of tasks sharing a common

failure source. The affinity score is:

l

∑
i=1

xi(xi−1)

2
(11)

The affinity score is maximized when all the tasks (task fail-

ures) are in the same domain, and minimized when tasks are

spread over different domains. A low affinity score represents

a low concentration and a low risk of correlated failure.

Table II compares the required numbers of extra tasks,

reliabilities, and affinity scores of the three placement algo-

rithms. For high reliability targets, the DH algorithm clearly

requires the fewest extra replicas to guarantee reliability. The

DH algorithm gives the lowest affinity score, showing that it

reduces the risk of correlated failures by having the lowest

task concentration. Reducing task concentration increases re-

liability with respect to correlated failures while minimizing

the number of extra tasks required to guarantee the desired

reliability.

It can also be seen that, for the same reliability target

(0.9999), the HRF algorithm has the lowest reliability and

the highest affinity score. Although it may seem intuitive

to place as many tasks as possible on the domain with the

highest reliability, this placement strategy leads to the highest

affinity score and the lowest reliability value when there is a

risk of correlated failure. It can also be seen that, for high

reliability targets, the HRF algorithm cannot even satisfy the

reliability constraint with the same upper bound value n as

the other two placement strategies. Thus, placing tasks using

the HRF algorithm would substantially increase the number

of extra tasks required for each job to achieve a given level

of reliability. This is because the HRF placements yield a

high level of correlation among potential failures, reducing the

benefits of increasing redundancy. Replication alone is thus not

sufficient to protect against correlated failures. In other words,

the risk of correlated failure is not mitigated and reliability is

not improved by increasing the redundancy within the failure

domain.

However, as shown in Table III, if a job’s desired reliability

is lower than the reliability of a failure domain (in this case

0.999), deploying all the tasks on any failure domain with

higher reliability that the job’s target reliability satisfies the

S(x) ≥ Smin constraint with no extra tasks. It should also be

noted that the probability of failure of a component during

a job runtime is a function of the job’s duration: longer

jobs are more likely to have failures during their runtime.

Therefore, for long running jobs with high reliability targets,

distributing the tasks over different failure domains (using DH
or proportional placement), is necessary to satisfy the job’s

reliability. However, this may not be the case for a short-

running job, as it is more probable to satisfy the reliability

constraint by deploying the tasks using HRF. The impact

of job duration on required number of extra tasks and job

reliability is shown in Table IV.

It can also be seen that the proportional placement al-

gorithm requires more extra tasks than the DH algorithm.

This is because although it distributes tasks proportionally

over different domains, the distribution is still biased by the

domains’ reliability. This bias in distribution increases the

concentration of the placement scheme and thus the affinity

score, thereby reducing reliability. The decrease in reliability

forces the system to deploy more tasks to achieve the target

reliability. In other words, a minimum level of distribution is

required to achieve a high reliability.

VI. RELATED WORK

Below, we review two categories of related work.

A. Failure analyses in data centers

Several studies [2], [5], [13] have focused on characterizing

failure sources and analyzing their impact on system availabil-
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TABLE II: Impact of placement on required number of extra tasks,
reliability and affinity score, Smin = 0.9999, job duration = 80 hours.

K Algorithm Extra tasks (n) Affinity score Reliability

500
DH 18 2089 0.9999
Proportional 23 2274 0.9999
HRF 25 137026 0.9995

700
DH 32 4015 0.9999
Proportional 33 4476 0.9999
HRF 36 269745 0.9996

1000
DH 36 8280 0.9999
Proportional 45 9228.6 0.9999
HRF 51 550725 0.9996

TABLE III: Impact of placement on required number of extra
tasks, reliability and affinity score, Smin = 0.999, K = 500, job
duration = 80 hours.

Algorithm Extra tasks (n) Affinity score Reliability
DH 9 2022 0.9995
Proportional 12 2170 0.9995
HRF 0 124251 0.9995

ity and reliability in cloud data centers. Ford et al. [2] studied

the impact of correlated failures on availability for Google’s

cloud storage system. They argued that scheduling strategies

should be aware of failure bursts caused by correlated failures.

Assuming that machines fail independently results in over-

estimation of the system’s availability at least by two orders

of magnitude. They also developed an availability model using

Markov chains and introduced multi-cell replication schemes

to cope with correlated failures.

Similarly, Gill et al. [13] presented an analysis of possible

failures in a Microsoft cloud data center. They also studied

the effectiveness of redundancy at maintaining reliability.

Their observations indicated that the effectiveness of network

redundancy at masking network failure is only 40%. This

was attributed to the propagation of configuration errors,

which can lead to concurrent failures of many tasks. Their

results highlight the necessity of spreading tasks over different

domains of control to achieve high reliability.

B. Failure-aware scheduling and allocation

Cirne et al. [14] discussed a task backup strategy to provide

reliability guarantees for a job. The goal is to determine the

probability of losing a certain number of backups and use this

probability for the admission control decisions. They took into

account the possibility of correlated failures of tasks caused

by rack and machine faults, but only if the failure domains

nicely nest into a single tree, which does not fit the network

TABLE IV: Impact of job duration and placement on required number
of extra tasks, reliability and affinity score, Smin = 0.999, K = 500.

Duration Algorithm Extra tasks Affinity score Reliability

80 h
DH 9 2022 0.9995
Proportional 12 2170.6 0.9995
HRF 0 124251 0.9995

168 h
DH 18 2058 0.9995
Proportional 21 2247 0.9992
HRF 25 137026 0.998

or power domain models. They also did not fully investigate

the possibility of multiple rack failures during the job runtime

and its impact on job reliability.

Bakkaloglu et al. [15] studied correlated failures in storage

systems. They modeled availability using a beta-binomial

distribution, which was computed by randomizing the failure

probabilities according to a binomial distribution, and used

a correlation factor to quantify the intensity of correlations.

However, different studies [2], [4] have shown that beta-

binomial distributions do not provide a good fit to real-world

data from data centers. Moreover, it is still challenging to

accurately estimate correlation coefficients.

Tang et al. [3] analyzed the impact of correlated failures on

reliability for DEC VAX clusters, and found that such failures

can reduce reliability by several orders of magnitude. They

proposed a correlation coefficient-based model to quantify

the relationship between failures and reliability. However, the

proposed model is only applicable to two-way correlations

and is not straightforwardly generalized to higher levels of

correlation.

Bodik et al. [8] presented an optimization framework for

achieving high fault tolerance while reducing the bandwidth

consumption in the network. They improved fault tolerance

by spreading applications across different failure domains.

However, their framework is not designed to cope with the

problem of correlated failures and does not take probabilities

of failure into account during scheduling.

Rabbani et al. [16] proposed a management framework

for maintaining high reliability. Their method considers the

heterogeneity of components’ failure rates when planning the

number and allocation of redundant virtual nodes in a virtual

infrastructure. However, their main focus is on independent

failures and not the correlated ones. Moreover, their main

objective is to minimize the number of machines required to

deploy the job, at the expense of increasing the number of

backups. Their procedure iteratively increases the number of

required backups, until the reliability constraint is satisfied. We

believe that estimating the number of extra backups without

considering allocations and the probability of machine failures

leads to over provisioning and is not a reasonable way to

maintain reliability.

Venice [17] is a framework for achieving high reliability for

a 3-tier application with VM dependencies. It has a reliability-

aware scheduler that deploys VMs on the machines with the

lowest reliability capable of meeting the service reliability

requirement. Then, over a number of trials, it removes the

machines with the lowest reliability and deploys the VMs on

the remaining set of machines. Finally, the scheduler selects

the allocation scheme with the lowest cost as its final solu-

tion. Sampaio [18] also considered the Mean Time Between

Failures (MTBF) of the nodes when planning allocations.

Both of these works ignored the impact of correlated failures

on service reliability and also did not consider the benefits

of using redundant replicas to attain the required service

reliability.

Mills et al. [19] addressed the replica scheduling problem
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using a greedy heuristic in a tree structure. The tree structure

represents the dependencies among system components. The

aim is to minimize the number of concurrent component

failures due to a single failure event. However, structuring the

component dependencies as a tree eliminates the possibility of

supporting overlapping failure domains.

VII. CONCLUSION

In this paper, we address the problem of efficiently schedul-

ing resources in a cloud data center to achieve reliability even

in the face of correlated failures. The goal is to achieve each

job’s reliability while minimizing the number of extra tasks

required during the job’s runtime. The reliability is achieved

through task replication and diversified job placement over

different failure domains.

We present a reliability model that accounts for failure

probabilities and the topologies of power and network com-

ponents in the data center. We also provide a method for ob-

taining approximate reliability estimates that does not require

expensive computations. We use our model to approximate

the minimum number of extra tasks required to achieve a

desired reliability. This is done by using a decision tree to map

the target reliability to a specific redundancy level. Moreover,

we introduce a scheduling algorithm to schedule tasks on

resources in a way that accounts for their capacity constraints.

The results show that if a job’s desired reliability is lower

than the reliability of a failure domain, deploying all the tasks

on failure domains with high reliability would be sufficient.

However, this is usually not the case. The job’s desired

reliability is often higher than the reliability of the failure

domains. Moreover, the actual failure rates of the devices can

be unknown and thus having an estimation the reliabilities.

In these scenarios, it is recommended to distribute the tasks

over multiple failure domains to reduce the risks of correlated

failures and reduce the number of required replicas. This is

because any concentration in placement yields a high level of

correlation among potential failures and reduces the benefits

of increasing the redundancy. In other words, replicating a task

within a failure domain cannot prevent it from being affected

by correlated failures.

In future work, we plan to extend our work to support non-

terminal failures, where failure durations are finite, tasks can

be restarted, and failures can be recovered. We also plan to

extend the model to support multiple running tasks per one

single machine.
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