
However, once the total number of disks gets large, it becomes
more cost-effective to employ an array controller that uses some
form of partial redundancy (such as parity) to protect the data it
stores. SuchRAIDs (for Redundant Arrays of Independent Disks)
were first described in the early 1980s [Lawlor81, Park86], and
popularized by the work of a group at UC Berkeley [Patterson88,
Patterson89]. By storing only partial redundancy for the data, the
incremental cost of the desired high availability is reduced to as
little as 1/N of the total storage-capacity cost (where N is the
number of disks in the array), plus the cost of the array controller
itself.

The UC BerkeleyRAID terminology has a number of differentRAID

levels, each one representing a different amount of redundancy and
a placement rule for the redundant data. Most disk array products
implementRAID level 3 or 5. InRAID level 3, host data blocks are
bit- or byte-interleaved across a set of data disks, and parity is
stored on a dedicated data disk (see Figure 1). InRAID level 5, host
data blocks are block-interleaved across the disks, and the disk on
which the parity block is stored rotates in round-robin fashion for
different stripes. Both hardware and softwareRAID products are
available from many vendors.

Unfortunately, currentRAID arrays are often difficult to use
[Chen93]: the differentRAID levels have different performance
characteristics, and perform well only for a relatively narrow range
of workloads. To accommodate this,RAID systems typically offer a
great many configuration parameters: data- and parity-layout
choice, stripe depth, stripe width, cache sizes and write-back
policies, etc. Setting these correctly is difficult, and requires
knowledge of workload characteristics that most people are unable
(and unwilling) to acquire. As a result, setting up aRAID array is
often a daunting task, that requires skilled, expensive people and—
in too many cases—a painful process of trial and error.

Making the wrong choice has two costs: the resulting system may
perform poorly; and changing from one layout to another almost
inevitably requires copying data off to a second device,

Figure 1 . Data and parity layout for two different RAID levels.
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Abstract
Configuring redundant disk arrays is a black art. To properly
configure an array, a system administrator must understand the
details of both the array and the workload it will support; incorrect
understanding of either, or changes in the workload over time, can
lead to poor performance.

We present a solution to this problem: a two-level storage hierarchy
implemented inside a single disk-array controller. In the upper level
of this hierarchy, two copies of active data are stored to provide full
redundancy and excellent performance. In the lower level,RAID 5
parity protection is used to provide excellent storage cost for
inactive data, at somewhat lower performance.

The technology we describe in this paper, known asHP AutoRAID,
automatically and transparently manages migration of data blocks
between these two levels as access patterns change. The result is a
fully-redundant storage system that is extremely easy to use,
suitable for a wide variety of workloads, largely insensitive to
dynamic workload changes, and that performs much better than
disk arrays with comparable numbers of spindles and much larger
amounts of front-endRAM cache. Because the implementation of the
HP AutoRAID technology is almost entirely in embedded software,
the additional hardware cost for these benefits is very small.

We describe theHP AutoRAID technology in detail, and provide
performance data for an embodiment of it in a prototype storage
array, together with the results of simulation studies used to choose
algorithms used in the array.

1  Introduction
Modern businesses and an increasing number of individuals depend
on the information stored in the computer systems they use. Even
though modern disk drives have mean-time-to-failure (MTTF)
values measured in hundreds of years, storage needs have increased
at an enormous rate, and a sufficiently-large collection of such
devices can still experience inconveniently frequent failures.
Worse, such failures can be extremely costly to repair: it may take
hours, or even days, to completely reload a large storage system
from backup tapes, and this can result in very costly downtime for
a business that relies on its computer systems being continuously
on-line.

For small numbers of disks, the preferred method to provide fault
protection is to duplicate (mirror) data on two disks with
independent failure modes. This solution is simple, and it performs
well.
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reformatting the array, and then reloading it. Each step of this
process can take hours; it is also an opportunity for inadvertent data
loss through operator error—one of the commonest source of
problems in modern computer systems [Gray90].

Adding capacity to an existing array is essentially the same
problem: taking full advantage of a new disk usually requires a
reformat and data reload.

Since RAID 5 arrays suffer reduced performance in “degraded
mode”—when one of the drives has failed—many include a
provision for one or more spare disks that can be pressed into
service as soon as an active disk fails. This allows redundancy
reconstruction to commence immediately, thereby reducing the
window of vulnerability to data loss from a second device failure
and also minimizing the duration of the performance degradation.
In the normal case, however, these spare disks are not used, and
contribute nothing to the performance of the system. (There’s also
the secondary problem of being convinced that a spare disk is in
fact still working: because it is idle, the array controller may not
find out that it has failed until it is needed—by which time it is too
late.)

1.1 The solution: a managed storage hierarchy
Fortunately, there’s a solution to these problems for a great many
applications of disk arrays: a redundancy-level storage hierarchy.
The basic idea is to combine the performance advantages of
mirroring with the cost-capacity benefits ofRAID 5 by mirroring
active data and storing relatively inactive data (or data that are just
read, not written) inRAID 5.

To make this work, only part of the data must be active (else the
cost-performance would reduce to that of mirrored data), and the
active subset must change relatively slowly over time (to allow the
array to do useful work, rather than just move data between the two
levels). Fortunately, studies on I/O access patterns, disk shuffling
and file-system restructuring have shown that these conditions are
often met in practice [Akyurek93, Deshpande88, Floyd89, Geist94,
Majumdar84, McDonald89, McNutt94, Ruemmler91,
Ruemmler93, Smith81].

Such a storage hierarchy could be implemented in a number of
different ways:

• Manually, by the system administrator. (This is how large
mainframes have been run for decades. [Gelb89] discusses a
slightly refined version of this basic idea.) The advantage of
this approach is that human intelligence can be brought to bear
on the problem—and perhaps globally-better solutions can be
developed, using knowledge that is simply not available to the
lower levels of the I/O and operating systems. However, it is
obviously error-prone (the wrong choices can be made, and
mistakes can be made in moving data from one level to
another); it cannot adapt to rapidly-changing access patterns;
it requires highly skilled people; and it does not allow new
resources (such as disk drives) to be added to the system
easily.

• In the file system, perhaps on a per-file basis. This might well
be the best possible place in terms of there being a good
balance of knowledge (the file system can track access
patterns on a per-file basis) and implementation freedom.
Unfortunately, there are many file system implementations in
customers’ hands, so deployment is a major problem.

• In a smart array controller, behind a block-level device
interface such as the Small Systems Computer Interface (SCSI)
standard [SCSI91]. Although this level has the disadvantage
that knowledge about files has been lost, it has the enormous
compensating advantage of being easily deployable—strict
adherence to the standard means that an array using this

approach can look just like a regular disk array, or even just a
set of plain disk drives. As we will show, the performance that
can be attained by operating at this level is outstanding in
almost all cases.

Not surprisingly, we are describing an array-controller-based
solution here. We use the name “HP AutoRAID” to refer both to the
collection of technology developed to make this possible, and its
embodiment in an array controller.

1.2 Summary of the features of HP AutoRAID

We can summarize the features of HP AutoRAID as follows:

Mapping. Metadata are maintained to map host block addresses to
physical locations, allowing transparent migration of individual
blocks.

Mirroring . Write-active data are mirrored for best absolute
performance and to provide single-disk failure redundancy.

RAID 5. Write-inactive data are stored inRAID 5 for good cost-
capacity while retaining single-disk failure redundancy.

Adaptation to changes in the amount of data stored. Space is
allocated to mirrored storage until there is more data than can be
stored in the array this way. When this happens, storage space is
automatically allocated to theRAID 5 storage class, and data
migrated down into it. Since this is a more compact data
representation, more data can now be stored in the array. This re-
apportionment is allowed to proceed until the capacity of the
mirrored storage has shrunk to about 10% of the total usable space.
(The exact number is a policy choice made by the implementors of
the HP AutoRAID firmware to maintain good performance.) Space
is apportioned in coarse-granularity units (1MB in the prototype).

Adaptation to workload changes. As the active set of data changes,
newly-active data are promoted to mirrored storage, and relatively
inactive data are demoted toRAID 5 in order to keep the amount of
mirrored data roughly constant. With care, this can be done in the
background, and need not impact the performance of the array. This
movement occurs completely automatically, in relatively fine
granularity units (64KB in the prototype).

Hot-pluggable disks, fans, power supplies, and controllers.These
allow a failed component to be removed and a new one inserted
while the system continues to operate. Although these are relatively
commonplace features in higher-end disk arrays, they are important
in enabling the next three features.

On-line storage capacity expansion.A disk can be added to the
array at any time, up to the maximum allowed by the physical
packaging (currently 12 disks in the prototype). The system
automatically takes advantage of the additional space by allocating
mirrored storage. As time and the workload permits, the active data
will be rebalanced across the available drives to even out the
workload between the newcomer and the previous set—thereby
getting maximum performance from the system.

Easy upgrade to new disks. Unlike conventional arrays, the disks
do not all need to have the same capacity. This has two advantages:
when a new drive is added, it can be purchased at the optimal
capacity/cost/performance point, without regard to prior purchases.
In addition, the automatic data reconstruction and rebalancing
facilities can be used to completely upgrade an array to a new disk-
capacity point by simply removing each old disk, inserting a
replacement disk, and then waiting for the reconstruction to
complete. (To eliminate the reconstruction, data could first be
“drained” from the disk being replaced if there is sufficient spare
capacity in the system.)

Controller fail-over. A single array can have two controllers, each
capable of running the entire subsystem. On failure of the primary,



the operations are rolled over to the other. (A future implementation
could allow concurrently active controllers.) A failed controller can
be replaced while the system is active.

Active hot spare. Thanks to the way in which data are allocated to
the disks (more on this below), the spare space needed to perform a
reconstruction can be spread across all of the disks, and used for
storing mirrored data. This means that the disk spindle that would
have been idle in a regularRAID array can contribute to the normal
operation of an HP AutoRAID array, thereby improving its
performance.

If a disk fails, mirrored data are demoted toRAID 5 to provide the
space to reconstruct the desired redundancy. Once this has
happened, a second disk failure can be tolerated—and so on, until
the physical capacity is entirely filled with data in theRAID 5
storage class.

Simple administration and setup. The array presents one or more
logical units (LUNs inSCSI terminology) to the host. Creating a new
LUN is a trivial matter from the front panel: it takes about 10
seconds to go through the menus, select a size, and confirm the
request. Since the array does not need to be formatted in the
traditional sense, the creation of theLUN doesn’t require a pass over
all the newly-allocated space to zero it and initialize its parity. (This
operation can take hours in a regular array.) Instead, all that is
needed is for the controller’s data structures to be updated.

Log-structuredRAID 5 writes. A well-known problem ofRAID 5
disk arrays is the so-called small-write problem. Doing an update-
in-place of part of a stripe takes 4 I/Os: old data and parity have to
be read, new parity calculated, and then new data and new parity
written back. HP AutoRAID avoids this overhead (in most cases; see
section 2.3.2) by writing to itsRAID 5 storage in a log-structured
fashion: that is, only empty areas of disk are written. (The
indirection mechanism used to find whether data are mirrored or in
RAID 5 provides the empty/full information for free.)

1.3 Related work
Many papers have been published onRAID reliability, performance,
and on design variations for parity placement and recovery schemes
(see [Chen94] for an annotated bibliography). The HP AutoRAID
work builds on many of these studies: we concentrate here on the
architectural issues of using multipleRAID levels (specifically 1 and
5) in a single array controller.

Storage Technology Corporation’s Iceberg [Ewing93, STK95] uses
a similar indirection scheme to map logicalIBM mainframe disks
(count-key-data format) onto an array of 5.25”SCSI disk drives [Art
Rudeseal, private communication, Nov. 1994]. IceBerg has to
handle variable-sized records; HP AutoRAID has aSCSI interface,
and can handle the indirection using fixed-size blocks. The
emphasis in the IceBerg project seems to have been on achieving
extraordinarily high levels of availability; the emphasis in HP
AutoRAID has been on performance once the single-component
failure model of regularRAID arrays had been achieved. IceBerg
does not include multipleRAID storage levels: it simply uses a
single level modifiedRAID 6 storage class [Dunphy91, Ewing93].

A team atIBM Almaden has done extensive work in improving
RAID array controller performance and reliability, and several of
their ideas have seen application inIBM mainframe storage
controllers. Their floating parity scheme [Menon89, Menon92]
uses an indirection table to allow parity data to be written in a
nearby slot, not necessarily its original location. This can help to
reduce the small-write penalty ofRAID 5 arrays. Their distributed
sparing concept [Menon92a] spreads the spare space across all the
disks in the array, allowing all the spindles to be used to hold data.
HP AutoRAID goes further than either of these: it allows both data

and parity to be relocated, and it uses the distributed spare capacity
to increase the fraction of data held in mirrored form, thereby
improving performance still further. Some of the schemes
described in [Menon93] are also used in the dual-controller version
of the HP AutoRAID array to handle controller failures.

The Loge disk drive controller [English92], and its follow-ons
Mime [Chao92] and Logical Disk [deJonge93], all used a scheme
of keeping an indirection table to fixed-sized blocks held on
secondary storage. None of these supported multiple storage levels,
and none were targeted atRAID arrays. Work on an Extended
Function Controller at HP’s disk divisions in the 1980s looked at
several of these issues, but awaited development of suitable
controller technologies to make the approach adopted in
HP AutoRAID cost effective.

The log-structured writing scheme used in HP AutoRAID owes an
intellectual debt to the body of work on log-structured file systems
(LFS) [Carson92, Ousterhout89, Rosenblum92, Seltzer93,
Seltzer95], and cleaning (garbage-collection) policies for them
[McNutt94, Blackwell95].

There is a large literature on hierarchical storage systems and the
many commercial products in this domain (for example [Chen73,
Cohen89, DEC93, Deshpande88, Epoch88, Gelb89, Henderson89,
Katz91, Miller91, Misra81, Sienknecht94, Smith81], together with
much of the proceedings of the IEEE Symposia on Mass Storage
Systems). Most of this work has been concerned with wider
performance disparities between the levels than exist in HP
AutoRAID. For example, they often use disk and robotic tertiary
storage (tape or magneto-optical disk) as the two levels.

Several hierarchical storage systems have used front-end disks to
act as a cache for data on tertiary storage. In HP AutoRAID,
however, the mirrored storage is not a cache: instead data move
between the storage classes, residing in precisely one of them at a
time.

The Highlight system [Kohl93] extended LFS to two-level storage
hierarchies (disk and tape) and also used fixed-size segments.
Highlight’s segments were around 1MB in size, however, and
therefore were much better suited for tertiary-storage mappings
than for two secondary-storage levels.

Schemes in which inactive data are compressed [Burrows92,
Cate90, Taunton91] exhibit some similarities to the storage-
hierarchy component of HP AutoRAID, but operate at the file system
level rather than at the block-based device interface.

Finally, like most modern array controllers, HP AutoRAID takes
advantage of the kind of optimizations noted in [Baker91,
Ruemmler93] that become possible with non-volatile memory.

1.4 Roadmap to remainder of paper
The remainder of the paper is organized as follows. We begin with
an overview of the technology: how an HP AutoRAID array
controller works. Next come two sets of performance studies. The
first is a set of measurements of a laboratory prototype; the second
a set of simulation studies used to evaluate algorithm choices for
HP AutoRAID. Finally, we summarize what we have learned from
this project and identify a few areas for possible future work.

2  The technology
This section of the paper introduces the basic technologies used in
HP AutoRAID. It starts with an overview of the hardware, then
discusses the layout of data on the disks of the array, including the
structures used for mapping data to their locations on disk. This is
followed by brief descriptions of normal read and write operations
to illustrate the flow of data through the system, and then by a series



of operations that are (usually) performed in the background, to
ensure that the performance of the system remains high over long
periods of time.

2.1 The HP AutoRAID  array controller hardware
As far as its hardware goes, an HP AutoRAID array is fundamentally
similar to a regularRAID array. That is, it has a set of disks, managed
by an intelligent controller that incorporates a microprocessor,
mechanisms for calculating parity, caches for staging data (some of
which are non-volatile), a connection to one or more host
computers, and appropriate speed-matching buffers. Figure 2 is an
overview of this hardware.

The hardware prototype for which we provide performance data
uses four back-endSCSI buses to connect to its disks, and a fast-
wide SCSI bus for its front-end host connection. Many other
alternatives exist for packaging this technology, but are outside the
scope of this paper.

The array presents one or moreSCSI logical units (LUNs) to its hosts.
Each of these is treated as a virtual device inside the array
controller: their storage is freely intermingled. ALUN’s size may be
increased at any time (subject to capacity constraints). Not every
block in aLUN must contain valid data—if nothing has been stored
at an address, the array controller need not allocate any physical
space to it.

2.2 Data layout
Much of the intelligence in an HP AutoRAID controller is devoted
to managing data placement on the disks. A two-level allocation
scheme is used.

2.2.1 Physical data layout:PEGs,PEXes, and segments

First, the data space on the disks is broken up into large-granularity
objects called Physical EXtents (PEXes), as shown in Figure 3.
PEXes are typically 1MB in size. SeveralPEXes can be combined to
make a Physical Extent Group (PEG). In order to provide enough
redundancy to make it usable by either the mirrored or theRAID 5
storage class, aPEG includes at least threePEXes on different disks.
At any given time, aPEG may be assigned to the mirrored storage
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Figure 2 . Overview of HP AutoRAID hardware.
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class or theRAID 5 storage class, or may be unassigned—thus, we
speak of mirrored,RAID 5, and freePEGs.

PEXes are allocated toPEGs in a manner that balances the amount of
data on the disks (and thereby, hopefully, the load on the disks),
while retaining the redundancy guarantees (no twoPEXes from one
disk can be used in the same stripe, for example). Because the disks
in an HP AutoRAID array can be of different sizes, this allocation
process may leave uneven amounts of free space on different disks.

Segments are the units of contiguous space on a disk that are
included in a stripe or mirrored pair; eachPEX is divided into a set
of segments. In the prototype, segments are 128KB in size. As
Figure 4 shows, mirrored andRAID 5 pegs are divided into
segments in exactly the same way, but the segments are logically
grouped and used by the storage classes in different ways.

2.2.2 Logical data layout:RBs

The logical space provided by the array—that visible to its
clients—is divided into relatively small units calledRelocation
Blocks (RBs). These are the basic units of migration in the system.
When aLUN is created or is increased in size, its address space is
mapped onto a set ofRBs. AnRB is not assigned space in a particular
PEG until the host issues a write to aLUN address that maps to the
RB.

In the prototype,RBs are 64KB in size. This size is a compromise
over the following pressures. Decreasing the size of anRB requires
more mapping information to record where theRBs have been put.
It also means that a larger fraction of the time spent moving whole-
RB units is spent on disk-arm seek and rotational delays. On the
other hand, a largerRB may increase migration costs if only small
amounts of data are being updated in eachRB. We describe the
relationship betweenRB size and performance in section 4.1.2.

EachPEG holds a predetermined number ofRBs, as a function of its
size and its storage class; unusedRB slots are marked as “free” until
they have anRB (data) allocated to them.

2.2.3 Mapping structures

A subset of the overall mapping structures are shown in Figure 5.
These data structures are optimized for looking up the physical disk
address of anRB, given its logical (LUN-relative) address, since that
is the most common operation. In addition, data are held about
access times and history; the amount of free space in eachPEG (for
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Figure 3 . Mapping of PEGs and PEXes onto disks. Figure is
taken from [Burkes95].
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cleaning and garbage-collection purposes), and various other
statistics. Not shown are various back pointers that allow additional
scans.

2.3 Normal operations
This section describes what happens to a host-initiated read or write
operation.

To start a request, the host sends aSCSI Command Descriptor Block
(CDB) to the HP AutoRAID array, where it is parsed by the controller.
Up to 32CDBs may be active at a time. An additional 2048CDBs
may be held in aFIFO queue waiting to be serviced; above this limit,
requests are queued in the host. (Delays can be caused by controller
resource limits, or if a request’s addresses overlap with any of those
already active.) Long requests are broken up into 64KB segments,
which are handled sequentially: this limits the amount of controller
resources a single I/O can consume, at minimal performance cost.

If the request is a Read, a test is made to see if the data being read
are already in the controller’s cache: either in the read cache, or
(completely) in the non-volatile write cache. If the data are
completely in memory, they are transferred to the host via the
speed-matching buffer, and the command then completes, once
various statistics have been updated. Otherwise, space is allocated
in the front-end buffer cache, and one or more requests are
dispatched to the back-end storage classes.

Writes are handled slightly differently, because the non-volatile
front-end write buffer (NVRAM) allows the host to consider the
request complete as soon as a copy of the data has been made in this
memory. First a check is made to see if any cached data need
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RAID 5 PEG invalidating, and then space is allocated in theNVRAM. (This may
have to wait until space is available; in doing so, it will usually
trigger a flush of existing dirty data to a back-end storage class.)
The data are copied into theNVRAM, and the host told that the
request is complete. Depending on theNVRAM cache-flushing
policy, a back-end write may be initiated at this point. More often,
nothing is done, in the hope that another subsequent write can be
coalesced with this one to increase efficiency.

Flushing data to a back-end storage class simply causes a back-end
write of the data if they are already in the mirrored storage class.
Otherwise, it will usually trigger a promotion of theRB fromRAID 5
to mirrored. (There are a few exceptions, which we will discuss
later.)

This promotion is done by calling the migration code, which
allocates space in the mirrored storage class and copies theRB from
RAID 5. If there is no space in the mirrored storage class (because
the background daemons have not had a chance to run, for
example), this may in turn provoke a demotion of some mirrored
data down toRAID 5. There are some tricky details involved in
ensuring that this cannot in turn fail—in brief, the free-space
management policies must anticipate the worst-case sequence of
such events that can arise in practice.

2.3.1 Mirrored reads and writes

Reads and writes to the mirrored storage class are straightforward:
a read call picks one of the copies, and issues a request to the
associated disk. (More on this below.) A write call causes writes to
two disks; it returns only when both copies have been updated. Note
that this is a back-end write call that is issued to flush data from the
NVRAM, and is not synchronous with the host write.

2.3.2RAID 5 reads and writes

Back-end reads to theRAID 5 storage class are as simple as for the
mirrored storage class: in the normal case, a read is issued to the
disk that holds the data. In the recovery case, the data may have to
be reconstructed from the other blocks in the same stripe. (The
usualRAID 5 recovery algorithms are followed in this case, so we
will not discuss the failure case more in this paper.)

Virtual device tables :
One per LUN. List of RBs
and pointers to the PEGs
in which they reside.

PEG tables : one per
PEG. Holds list of RBs
in PEG and list of
PEXes used to store
them.

PEX tables : one per physical disk drive

Figure 5 . Structure of the tables that map from addresses in
virtual volumes to PEGs, PEXes, and physical disk addresses
(simplified).



Back-endRAID 5 writes are rather more complicated, however.
RAID 5 storage is laid out as a log: that is, freshly-demotedRBs are
appended to the end of a “currentRAID 5 write PEG”, overwriting
virgin storage there. Such writes can be done in one of two ways:
per-RB writes or batched writes. The former are simpler; the latter
more efficient.

• Forper-RB writes, as soon as anRB is ready to be written, it is
flushed to disk. Doing so causes a copy of its contents to flow
past the parity-calculation logic, whichXORs it with its
previous contents—the parity for this stripe. (To protect
against power failure during this process, the prior contents of
the parity block are first copied into a piece of non-volatile
memory.) Once the data have been written, the parity can also
be written. With this scheme, each data-RB write causes two
disk writes: one for the data, one for the parityRB. This scheme
has the advantage of simplicity, at the cost of slightly worse
performance.

• Forbatched writes, the parity is only written once all the data-
RBs in a stripe have been written, or at the end of a batch. If, at
the beginning of a batched write, there is already valid data in
thePEG being written, the prior contents of the parity block are
copied to non-volatile memory along with the index of the
PEG’s highest-numberedRB that contains valid data. (The
parity was calculated byXORing onlyRBs with indices less
than or equal to this value.)RBs are then written to the data
portion of the stripe until the end of the stripe is reached or the
batch completes; at that point, the parity is written. (The parity
has been computed by then because as each dataRB was being
written, the parity calculation logic incorporated it into the
parity.) If the batched write fails to complete for any reason,
the old parity and validRB index that were stored in non-
volatile memory are restored, returning the system to its pre-
batch state, and the write is retried using the per-RB method.
Batched writes require a bit more coordination than per-RB
writes, but require only one additional parity write for each
full stripe of data that is written. MostRAID 5 writes are
arranged to be batched writes.

In addition to these logging write methods, the method typically
used in non-loggingRAID 5 implementations (read-modify-write) is
also used in some cases. This method, which reads old data and
parity, modifies them, and rewrites them to disk, is used to allow
forward progress in rare cases when noPEG is available for use by
the logging write processes. It is also used when it is better to
update data (orholes; see section 2.4.1) in place inRAID 5 than to
migrate anRB into mirrored storage, such as in background
migrations when the array is idle.

2.4 Background operations
In addition to the foreground activities described above, the
HP AutoRAID array controller executes many background activities
like garbage collection and layout balancing. These background
algorithms attempt to provide “slack” in the resources needed by
foreground operations so that the foreground never has to trigger a
synchronous version of these background tasks; such synchronous
invocations can dramatically reduce performance.

The background operations are triggered when the array has been
“idle” for a period of time. When an idle period is detected (using
an algorithm based on current and past device activity—the array
does not have to be completely devoid of activity to be declared
“idle”), the array performs one set of background operations. Each
subsequent (or continuation of the current) idle period triggers
another set of operations.

After a long period of activity, it may take a moderate amount of
time to detect that the array is idle. We hope to apply some of the

results from [Golding95] to improve the idle period detection and
prediction accuracy, which will in turn allow us to be more
aggressive about executing the background algorithms.

2.4.1 Compaction: cleaning and hole-plugging

The mirrored storage class acquiresholes,empty RB slots, when
RBs are demoted to theRAID 5 storage class. (Updates to mirrored
RBs are written in place, so they generate no holes.) These holes are
added to a free list in the mirrored storage class, and may
subsequently be used to contain promoted or newly-createdRBs. If
a newPEG is needed for theRAID 5 storage class, and no freePEXes
are available, a mirroredPEG may be chosen forcleaning: all the
data are migrated out to fill holes in other mirroredPEGs, after
which the PEG can be reclaimed and reallocated to theRAID 5
storage class.

Similarly, theRAID 5 storage class acquires holes whenRBs are
promoted to the mirrored storage class, usually because theRBs
have been updated. Because the normalRAID 5 write process uses
logging, the holes cannot be reused directly; we call themgarbage.

If the RAID 5 PEG containing the holes is almost full, the array
performshole-plugging garbage collection.RBs are copied from a
PEG with a small number ofRBs, and used to fill in the holes of an
almost-fullPEG. This minimizes data movement if there is a spread
of fullness across thePEGs, which is often the case.

If the PEG containing the holes is almost empty and there are no
other holes to be plugged, the array doesPEG-cleaning: that is, it
appends the remaining validRBs to the current end of theRAID 5
write log, and reclaims the completePEG as a unit.

2.4.2 Migration: moving RBs between levels

A background migration policy is run to moveRBs from mirrored
storage toRAID 5. This is done primarily to provide enough empty
RB slots in the mirrored storage class to handle a future write burst.
As [Ruemmler93] showed, such bursts are the common manner in
which currentUNIX1 systems emit updates.

RBs are selected for migration by an approximate Least-Recently-
Written algorithm. Migrations are performed in the background
until the number of freeRB slots in the mirrored storage class or free
PEGs exceeds a high water mark that is chosen to allow the system
to handle a burst of incoming data. This threshold can be set to
provide better burst-handling at the cost of slightly lower out-of-
burst performance; its value is currently fixed in the AutoRAID
firmware, but it could also be determined dynamically.

2.4.3 Balancing: adjusting data layout across drives

When new drives are added to an array, they contain no data and
therefore do not contribute to the system’s performance. Balancing
is the process of migratingPEXes between disks to equalize the
amount of data stored on each disk, and thereby also the request
load imposed on each disk. (Access histories could be used to
balance the disk load more precisely, but this is not done in the
current prototype.) Balancing is also a background activity,
performed when the system has little else to do.

2.5 Workload logging
The performance delivered by a secondary storage system depends
to a certain degree on the workload it is presented. This is true of
HP AutoRAID, and doubly so of regularRAID arrays. Part of the
uncertainty we faced while doing our performance work was the
lack of a broad range of real, measured system workloads at the
1 UNIX is a registered trademark in the United States and other

countries, licensed exclusively through X/Open Company
Limited.



disk I/O level that had been measured accurately enough. The
number of such traces that have been gathered is relatively small;
the number that are available to research groups other than those
that acquired them is smaller still.

To help remedy this in the future, the HP AutoRAID array
incorporates an I/O workload logging tool. When presented with a
specially-formatted disk, the start and stop times of every
externally-issued I/O request are recorded on it. Other events can
also be recorded, if desired. The overhead of doing this is very
small: the event logs are first buffered in the controller’s RAM, and
then written out in large blocks. The result is a faithful record of
everything the particular unit was asked to do; it can be analyzed
after the event, and used to drive simulation studies such as the kind
we describe here.

2.6 Management tool
The product team also developed a management tool that can be
used to analyze the performance of an HP AutoRAID array over a
period of time. It operates off a set of internal statistics kept by the
firmware in the controller, such as cache utilization, I/O times, disk
utilizations, and so on. These statistics are relatively cheap to
acquire and store, and yet can provide significant insight into the
operation of the system. By doing an off-line analysis using a log
of the values of these statistics, the tool can use a set of rule-based
inferences to determine (for example) that for a particular period of
high load, performance could have been improved by adding cache
memory because the array controller was short of read cache.

3  HP AutoRAID  performance results
A combination of prototyping and event-driven simulation was
used in the development of HP AutoRAID. Most of the novel
technology for HP AutoRAID is in the algorithms and policies used
to manage the storage hierarchy. As a result, hardware and
firmware prototypes were developed concurrently with event-
driven simulations that studied design choices for algorithms,
policies, and parameters to those algorithms.

The primary development team was based at the product division
that designed, built, and tested the prototype hardware and
firmware. They were supported by a group at HP Laboratories that
built a detailed simulator of the hardware and firmware and used it
to model alternative algorithm and policy choices in some depth.
This organization allowed the two teams to incorporate the
technology into products in the least possible time while still fully
investigating alternative design choices.

In this section, we present measured results from a laboratory
prototype of a controller embodying the HP AutoRAID technology.
In the next, we present a set of comparative performance analyses
of different algorithm and policy choices that were used to help
guide the implementation of the real thing.

3.1 Experimental setup
The baseline HP AutoRAID configuration on which the data we
report were measured is a 12-disk system with 16MB of controller
data cache, connected to an HP 9000/897 system running release
10.0 of theHP-UX operating system [Clegg86]. The HP AutoRAID
array was configured with 12 2.0GB 7200RPM Seagate ST32550
(Barracuda) disk drives.

To calibrate the HP AutoRAID results against external systems, we
also include measurements taken (on the same host hardware, on
the same days, with the same host configurations, number of disks,
and type of disks, except as noted below) on two other disk
subsystems:

• A Data General CLARiiON® Series 2000 Disk-Array Storage
System Deskside Model 2300 with 64MB front-end cache. (We
use the term “RAID array” to refer to this system in what
follows). This array was chosen because it is the
recommended third-partyRAID array solution for one of the
primary customers of the HP AutoRAID product.

• A set of directly-connected individual disk drives, referred to
here as “JBOD” (Just a Bunch Of Disks). This allows us to offer
a comparison with a solution that provides no data redundancy
at all. There were two configuration differences between the
JBOD tests and the other tests:
– Because no space is used for parity inJBOD, 11 disks were

used rather than 12 to approximately match the amount of
space available for data in the other configurations.

– TheSCSI adapter used was a single-ended card that also
requires more hostCPUcycles perI/O than the differential
card used in the HP AutoRAID andRAID array tests. We
estimate that this reduced the performance ofJBOD by 10%
on theOLTP test described below, but did not affect the
micro-benchmarks because they were notCPU limited.

3.2 Performance results
Although we present mostly micro-benchmark results because they
isolate individual performance characteristics, we begin with a
macro-benchmark: running anOLTP database workload made up of
medium-weight transactions against the HP AutoRAID array, the
regularRAID array, andJBOD. The database used in this test was
only 6.7GB, which allowed it to fit entirely in mirrored storage in the
HP AutoRAID; working set sizes larger than available mirrored
space are discussed below. For this benchmark, theRAID array’s 12
disks were spread evenly across its 5SCSI channels, the 64MB cache
was enabled, and the default 2KB stripe-unit size was used. Figure 6
shows the result: HP AutoRAID significantly outperforms theRAID
array, and has performance comparable toJBOD.

Data from the micro benchmarks are provided in Figure 7. This
shows the relative performance of the two arrays for random and
sequential reads and writes. (The workloads were provided by a
single-process version of an internal benchmark known asDB; the
working-set size for the random tests was 2GB.) We hypothesize
that the poor showing of the cachedRAID array on the random loads
is due to the cost of searching the cache: the cache hit rate should
be close to zero in these tests.

The HP AutoRAID array significantly outperforms the regularRAID
array. The results shown for theRAID array are the best results
obtained after trying a number of different array configurations: this
was alwaysRAID 5, 8KB cache page, cache on or off as noted.

AutoRAID JBOD
0

20

40

60

80

100

%
 im

pr
ov

em
en

t i
n 

tra
ns

ac
tio

n 
ra

te
ve

rs
us

 R
A

ID
 a

rr
ay

Figure 6 . OLTP benchmark comparison of HP AutoRAID and
non-RAID drives to a regular RAID array (percent improvement
in transaction rate versus the RAID array result). Our estimate
of the performance of the non-RAID drives (JBOD) using the
same SCSI adapter as the other tests is shown in grey.



Results forRAID 3 were never better than the results shown. Indeed,
this demonstrated the difficulties involved in properly configuring
a RAID array: many parameters were adjusted (caching on or off,
cache granularity, stripe depth and data layout), and no single
combination performed well across the range of workloads
examined.

With the working set within the size of the mirrored space
performance is very good, as shown by Figure 6 and Figure 7. But
if the working-set constraint is exceeded for long periods of time, it
is possible to drive the HP AutoRAID array into a mode in which
each update causes the targetRB to be promoted up to the mirrored
storage class, and a second one demoted toRAID 5. This behavior is
obviously undesirable if the dominant workload pattern does not
meet the working-set constraint. If the behavior occurs in practice,
however, an HP AutoRAID device can be configured to avoid it by
adding enough disks to keep all the active data in mirrored storage.
If all the data were active, the cost-performance advantages of the
technology would, of course, be reduced. Fortunately, it is fairly
easy to predict or detect the environments that have a large working
set and many updates, and to avoid them if necessary.

4  Simulation studies
The previous section provided insight into the overall, absolute
performance of an HP AutoRAID, as measured on real hardware. In
this section, we will illustrate several design choices that were
made inside the HP AutoRAID implementation. To do so, we used
trace-driven simulation.

Our simulator is built on the Pantheon2 [Golding94, Cao94]
simulation framework, which is a detailed, trace-driven simulation
environment written in C++ using an enhanced version of the

2 The simulator used to be called TickerTAIP, but we have changed
its name to avoid confusion with the parallelRAID array project of
the same name [Cao94].
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Figure 7 . Micro-benchmark comparisons of HP AutoRAID, a
regular RAID array, and non-RAID drives.

AT&T tasking package. Individual simulations are configured from
the set of available C++ simulation objects using scripts written in
the Tcl language [Ousterhout94], and configuration techniques
described in [Golding94]. The disk models used in the simulation
are improved versions of the detailed, calibrated models described
in [Ruemmler94].

The traces used to drive the simulations are from a variety of
systems, including:cello, a timesharing HP 9000 Series 800HP-UX
system;snake, an HP 9000 Series 700HP-UX cluster file server;
OLTP, an HP 9000 Series 800HP-UX system running a database
benchmark made up of medium-weight transactions (not the
system described in section 3.2); a personal workstation; and a
Netware server. We also used subsets of these traces, such as the
/usr disk fromcello, a subset of the database disks fromOLTP, and
the OLTP log disk. Some of them are for long time periods (up to
three months), although most of our simulations used two-day
subsets of the traces. Almost all contain detailed timing information
to 1µs resolution. Several of them are described in considerable
detail in [Ruemmler93].

We modelled the hardware of HP AutoRAID using Pantheon
components (caches, buses, disks, etc.), and wrote detailed models
of the basic firmware and of several alternative algorithms or
policies for each of about 40 design experiments. The Pantheon
simulation core comprises about 46K lines of C++ and 8K lines of
Tcl, and the HP AutoRAID specific portions of the simulator added
another 16K lines of C++ and 3K lines of Tcl.

Because of the complexity of the model and the number of
parameters, algorithms, and policies that we were examining, it was
impossible to explore all combinations of the experimental
variables in a reasonable amount of time. We chose instead to
organize our experiments into baseline runs and runs with one or a
few related changes to the baseline. This allowed us to observe the
performance effects of individual or closely-related changes, and to
perform a wide range of experiments reasonably quickly. (We used
a cluster of 12 workstations to perform the simulations; even so, a
full run of all our experiments takes about a week of elapsed time.)

We performed additional experiments to combine individual
changes that we suspected might strongly interact (either positively
or negatively) and to test the aggregate effect of a set of algorithms
that we were proposing to the product development team.

No hardware implementation of HP AutoRAID was available early
in the simulation study, so we were initially unable to calibrate our
simulator (except for the disk models). Because of the high level of
detail of the simulation, however, we were confident that relative
performance differences predicted by the simulator would be valid
even if absolute performance numbers were not yet calibrated. We
therefore used the relative performance differences we observed in
simulation experiments to suggest improvements to the team
implementing the prototype firmware, and these are what we
present here. In turn, we updated our baseline model to correspond
to the changes they made to their implementation.

Since there are far too many individual results to report here, we
have chosen to describe a few that highlight some of the particular
behaviors of the HP AutoRAID system. Please note that the
measured data from the real hardware provide information about
absolute performance, while the results in this section compare the
relative performance of different simulated system configurations.

4.1 Relative performance results

4.1.1 Disk speed

Several experiments measured the sensitivity of the design to the
size or performance of various components. For example, the



system uses standardSCSI disks, so we wanted to understand the
effects of buying more expensive, faster disks. The baseline disks
held 2GB and spun at 5400RPM. We evaluated four variations of
this disk: spinning at 6400RPM and 7200RPM, keeping either the
data density (bits per inch) or transfer rate (bits per second)
constant. As expected, increasing the back-end disk performance
generally improves overall performance, as shown in Figure 8. The
results suggest that improving transfer rate is more important than
improving rotational latency.

4.1.2 RB size

The standard AutoRAID system uses 64KB RBs as the basic storage
unit. We looked at the effect of using smaller and larger sizes. For
most of the workloads (see Figure 9) the 64KB size the best of the
ones we tried: obviously the balance between seek and rotational
overheads versus data movement costs is about right. (This is
perhaps not too surprising: the disks we are using have track sizes
of around 64KB, and transfer sizes in this range will tend to get
much of the benefit from better mechanical delays.)

4.1.3 Data layout

Since the system allows blocks to be remapped, blocks that the host
system has tried to lay out sequentially will often be physically
discontiguous. To see how bad this could get, we compared the
performance of the system when hostLUN address spaces are
initially laid out completely linearly on disk (as a best case) and
completely randomly (as a worst case). Figure 10 shows the
difference between the two layouts: there is a modest degradation
in performance in the random case compared to the linear one. This

Figure 8 . Effect of disk spin speed on overall performance.
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Figure 9 . Effect of RB size on overall performance.
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suggests that the choice ofRB size is large enough to limit the
impact of seek delays for sequential accesses.

4.1.4 Mirrored storage class read selection algorithm

When the front-end read cache misses on anRB that is stored in the
mirrored storage class, the array can choose to read either of the
stored copies. The baseline system selects the copy atrandom in an
attempt to avoid making one disk a bottleneck. However, there are
several other possibilities:

• strictly alternating between disks (alternate);
• attempting to keep the heads on some disks near the outer edge

while keeping others near the inside (inner/outer);
• using the disk with the shortest queue (shortest queue);
• using the disk that can reach the block first, as determined by

a shortest-positioning-time algorithm [Seltzer90, Jacobson91]
(shortest seek).

Further, the policies can be “stacked”, first using the most
aggressive policy but falling back to another to break a tie. In our
experiments,random is always the final fallback policy.

Figure 11 shows the results of our investigations into the
possibilities. By usingshortest queue as a simple load-balancing
heuristic, performance is improved by an average of 3.3% over
random for these workloads.Shortest seek performed 3.4% better
than random, but is much more complex to implement because it
requires detailed knowledge of disk head position and seek timing.

Static algorithms such asalternate and inner/outer sometimes
perform better thanrandom, but sometimes interact unfavorably
with patterns in the workload and decrease system performance.

Figure 10 . Sensitivity to data layout.
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Figure 11 . Effect of mirrored storage class read disk
selection policy on overall performance.

-5 0 5 10

Percent improvement versus random

Shortest seek + queue
Shortest seek

Shortest queue
Inner/outer

Alternate
cello-usr          

Shortest seek + queue
Shortest seek

Shortest queue
Inner/outer

Alternate
oltp-log          

Shortest seek + queue
Shortest seek

Shortest queue
Inner/outer

Alternate
oltp-db          

Shortest seek + queue
Shortest seek

Shortest queue
Inner/outer

Alternate
snake          



We note in passing that these differences do not show up under
micro-benchmarks (of the type reported in Figure 7) because the
disks are typically always driven to saturation, and do not allow
such effects to show through.

4.1.5 Write cache overwrites

We investigated several policy choices for managing theNVRAM
write cache. The baseline system, for instance, did not allow one
write operation to overwrite dirty data already in cache; instead, the
second write would be blocked until the previous dirty data in the
cache had been flushed to disk. As Figure 12 shows, allowing
overwrites had a noticeable impact on most of the workloads. It had
a huge impact on theOLTP-log workload, improving its performance
by 432%! We omitted this workload from the graph for scaling
reasons.

4.1.6 Hole-plugging duringRB demotion

RBs are typically written toRAID 5 for one of two reasons:
demotion from mirrored storage, or garbage collection. During
normal operation, the system creates holes inRAID 5 by promoting
RBs to the mirrored storage class. In order to keep space
consumption constant, the system later demotes (other)RBs to
RAID 5. In the default configuration, HP AutoRAID uses logging
writes to demoteRBs toRAID 5 quickly, even if the demotion is done
during idle time; these demotions do not fill the holes left by the
promotedRBs, giving theRAID 5 cleaner additional work. To reduce
the work done by theRAID 5 cleaner, we allowedRBs demoted
during idle periods to be written toRAID 5 using hole-plugging.
This optimization reduced the number ofRBs moved by theRAID 5
cleaner by 93% for thecello-usr workload and by 96% forsnake,
and improved meanI/O time for userI/Os by 8.4% and 3.2%
respectively.

5  Summary
HP AutoRAID works extremely well, providing close to the
performance of a non-redundant disk array across a range of
workloads. At the same time, it provides full data redundancy, and
can tolerate failures of any single array component.

It is very easy to use: one of the authors of this paper was delivered
a system without manuals a day before a demonstration, and had it
running a trial benchmark five minutes after getting it connected to
his (completely unmodified) workstation. The product team has had
several such experiences in demonstrating the system to potential
customers.

Figure 12 . Effect of allowing write cache overwrites on
overall performance.
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The first product based on the technology, the HP XLR1200
Advanced Disk Array, is now available.

5.1 Principles and lessons learned
In the course of doing this work, we (re)learned several things.
Some of them were obvious in hindsight (that’s what hindsight is
for), but others were slightly less so. Here’s a short list of the second
kind.

Ease of use is surprisingly important. New technology is taken up
only slowly if it is difficult to use—and the performance sensitivity
of traditional RAID arrays means that they suffer from this
drawback. As we have shown, this need not be the case.

Dynamic adaptation to the incoming workload is a big win. It
removes a considerable burden from the user, and provides much
smoother degradation in performance as the workload changes over
time. In fact, it is often a good idea not to ask users to specify their
storage needs: most people don’t know and don’t care. (Even the
highly-trained evaluators of theRAID array had considerable
difficulty in configuring it to get maximum performance.)

The HP AutoRAID technology is not a panacea for all storage
problems: there are workloads that do not suit its algorithms well,
and environments where the variability in response time is
unacceptable. Nonetheless, it is able to adapt to a great many of the
environments that are encountered in real life, and it provides an
outstanding general purpose solution to storage needs where
availability matters.

The isolation barriers that result from standardized interfaces make
it possible to deploy technology such as HP AutoRAID widely with
little effort. The freedom to innovate provided by theSCSI
command set interface is quite remarkable, given its genesis.

Software is the differentiator in the HP AutoRAID technology, not
hardware. This may seem obvious, but remember that most people
think of a disk array as hardware.

There were several instances where using real-life workloads gave
different results than micro-benchmarks. For example, the
differences we report for the mirrored storage class read algorithm
were undetectable in the micro-benchmarks; because these
benchmarks always saturated the physical disk mechanisms, they
left no differences in queue length or seek distances to exploit.
Furthermore, the burstiness that is common in real workloads, but
not in micro-benchmarks, allows HP AutoRAID to do so well in
adapting itself in the background—without periods of low activity,
all rearrangements would have to be done in the foreground, which
would contribute to lower performance and much higher
performance variability.

HP AutoRAID invalidates the common mechanisms for
benchmarks: as it is tested, its performance will tend to improve, so
runs will not be repeatable in the normal sense.

There were several cases early on where the simulation team
attempted a “fancier” resource usage model than the production
system they were trying to model. (The most egregious of these was
an attempt to use the same physical resources for data caching and
back-end data movement.) Although this approach might perhaps
have resulted in a small improvement in performance, it also
resulted in horrendous deadlock problems. We re-learned that the
virtues of simplicity often outweigh the cost of throwing a few
additional hardware resources, such as extra memory, at a problem.

There were a few cases where our early simulations demonstrated
classic convoy phenomena in the algorithms: a write that caused a
migration, which slowed down writes, which bunched up and
demanded a whole slew of migrations, which … Fixing these
required careful attention to reserving sufficient free resources. In



addition, were reminded that it is sub-optimal to revert to a slower-
than-normal write scheme when the number of outstanding writes
exceeds some threshold, because this will simply exacerbate the
problem. We still see proposals for new disk scheduling algorithms
that have not yet understood this point.

Despite our growing range of real workload traces, we are painfully
aware that we do not yet have a fully representative set. Also, traces
are point measurements taken on today’s systems—and so are only
an approximation to the access patterns that will become prevalent
tomorrow. Nonetheless, we believe strongly that measured traces
exhibit properties that no synthetic stream is likely to. Despite their
drawbacks, traces are much better tests of system behavior than
synthetic loads or benchmarks for a controller as complex as
HP AutoRAID.

5.2 Future work
What we have described in this paper is a subset of the complete
HP AutoRAID design. The technology will continue to be enhanced
by adding new functionality to it: given the implementation base
established by the first development, this is an incremental task
rather than a revolutionary one, so we hope for rapid deployment of
several of these new features. In addition to the normal product-
development performance tuning that takes place, two particular
areas are likely to be idle-period detection and prediction, and
front-end cache-management algorithms.

In addition, we have areas where we have plans to improve our
processes. For example, we are pursuing better techniques for
synthesizing traces with much greater fidelity to real life than is the
current norm, and looking into the issues involved in replaying the
current ones we have in a manner that allows us to experiment
better with workload variations.

Finally, we are also considering how best to extend some of the
HP AutoRAID ideas into tertiary storage systems (perhaps in the
style of [Kohl93]).
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