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Introduction

Idle periods can be used to do work that will improve
overall system performance

Need to know:

❏ when idle periods (will) happen

❏ how long they will last

Want to be able to say why one detection mechanism
is better than another



2

Introduction
Our approach to using idleness

Medium-term scheduling problem:

Build a detector that watches the system

Emits a stream of predictions (start, duration)

Use these to schedule idle tasks

incoming
work

server

idleness
detector

idle task
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Introduction
What is different here?

Durations:

❏ anticipate when new work will arrive

❏ can adjust work to the expectation

Unlike background processing:

❏ adding and removing tasks from a system

❏ complement each other

Unlike real-time scheduling:

❏ no guarantees—best-effort only

❏ use little knowledge of other activities
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Idle tasks
Some examples

Delay ordinary work

❏ delaying writes

Eager work

❏ readahead, compilation, cache flushing

Improve system behavior

❏ cache coherence, rebuilding indexes

Load balancing

❏ determine lightly-used resources, CPU versus
bandwidth trade-offs
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Characterizing idle tasks

❏ Interruptability (run to completion, stop early)

❏ Work loss (redo, undo, checkpoint)

❏ Resource use (exclusive, shared)

idle
tasks

detector
events

regular
work

interrupt
finished

start idle (d)
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Characterizing idle tasks
Detailed examples

Spinning down a disk

❏ task: spin disk down, then wait

❏ recovery: spin disk back up

❏ “interruptible”, excludes other disk activity

File system reorganization

❏ task: reorganize one “chunk”

❏ may be interruptible, with loss of work

❏ other operations can proceed



7

Detecting idle time
An architecture

system
events

start

actuator

skeptic

predictor

predictor

stop

predictions

to idle
task
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Detecting idle time
When to start

❏ Timer

❏ Rate-based

❏ Periodic

❏ Pattern recognition

❏ Adaptive versus static
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Detecting idle time
Duration

❏ Fixed

❏ Moving average

❏ Adaptive increase/decrease

❏ Pattern recognition

❏ “At least” versus “exactly”
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Detecting idle time
Using skeptics to improve predictions

Filtering the stream:

❏ time-of-day

❏ shut off when performing poorly

❏ special cases

Combining multiple predictions:

❏ quorum voting

❏ binomial weighting algorithm
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Evaluating idle detectors
Mean idle duration

Only consider start time

Measure duration  from start to next operation

0 20 40 60 80 100

Mean duration (seconds)

EventWindow-25-IOperSec-0.1
AdaptTimerArithArith-10.0

EventWindow-5-IOperSec-0.1
AdaptTimerGeomArith-10.0
AdaptTimerArithGeom-10.0

MovingAverage-0.1-0.9
PLL2-1

EventWindow-25-KBperSec-4
MovingAverage-1.0-0.9

EventWindow-5-KBperSec-4
EventWindow-25-BusyPerSec-0.01

Timer-5.0
AdaptTimerArithArith-1.0

EventWindow-5-BusyPerSec-0.01
EventWindow-25-IOperSec-5

AdaptTimerGeomArith-1.0
AdaptTimerArithGeom-1.0

AdaptTimerArithArith-0.100
MovingAverage-10.0-0.9
AdaptTimerGeomGeom

EventWindow-25-KBperSec-40
EventWindow-5-IOperSec-5

Timer-1.0
EventWindow-5-KBperSec-40

PLL-1
EventWindow-25-BusyPerSec-0.10

AdaptTimerGeomArith-0.100
AdaptTimerArithGeom-0.100

EventWindow-5-BusyPerSec-0.10
Actual
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Evaluating idle detectors
Efficiency

For the same data set, compute efficiency:

efficiency = predicted idle time / actual idle time
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Evaluating idle detectors
How many operations are affected?

Add duration predictions (and follow them)

Count violations

0.0 0.5 1.0

Mean rate (op/s)

BackoffArithArith-1.0
Average

BackoffArithArith-0.100
BackoffArithGeom-1.0

BackoffArithArith-0.010
BackoffArithGeom-0.100
BackoffArithGeom-0.010

EventWindow 25, IO/sec 0.1:          
BackoffArithArith-1.0

BackoffArithArith-0.100
BackoffArithArith-0.010
BackoffArithGeom-1.0

Average
BackoffArithGeom-0.100
BackoffArithGeom-0.010

AdaptTimerArithGeom 0.100:           
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Evaluating idle detectors
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Using the detectors for spin-down
Energy savings

Hypothesis: energy savings related to efficiency
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Using the detectors for spin-down
Energy savings

Hypothesis: related to mean idle duration
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Using the detectors for spin-down
Number of delayed operations

Hypothesis: related to violation rate
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Using the detectors for file system
reorganization

Hypothesis: intrusiveness related to violation rate
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Idleness is not sloth
Conclusions

❏ Many opportunities for using idle time productively

❏ Taxonomy of idle time helped guide analysis

❏ Taxonomy of detection methods helped us find new
methods

❏ The detectors can be used to schedule realistic idle
tasks, and we can evaluate how well they work

Contact: golding@hpl.hp.com
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