
1

Introduction

Idle periods can be used to do work that will improve
overall system performance

Need to know:

❏ when idle periods (will) happen

❏ how long they will last

Want to be able to say why one detection mechanism
is better than another

2

Introduction
Our approach to using idleness

Medium-term scheduling problem:

Build a detector that watches the system

Emits a stream of predictions (start, duration)

Use these to schedule idle tasks

incoming
work

server

idleness
detector

idle task

3

Introduction
What is different here?

Durations:

❏ anticipate when new work will arrive

❏ can adjust work to the expectation

Unlike background processing:

❏ adding and removing tasks from a system

❏ complement each other

Unlike real-time scheduling:

❏ no guarantees—best-effort only

❏ use little knowledge of other activities

4

Idle tasks
Some examples

Delay ordinary work

❏ delaying writes

Eager work

❏ readahead, compilation, cache flushing

Improve system behavior

❏ cache coherence, rebuilding indexes

Load balancing

❏ determine lightly-used resources, CPU versus
bandwidth trade-offs

5

Characterizing idle tasks

❏ Interruptability (run to completion, stop early)

❏ Work loss (redo, undo, checkpoint)

❏ Resource use (exclusive, shared)

idle
tasks

detector
events

regular
work

interrupt
finished

start idle (d)

6

Characterizing idle tasks
Detailed examples

Spinning down a disk

❏ task: spin disk down, then wait

❏ recovery: spin disk back up

❏ “interruptible”, excludes other disk activity

File system reorganization

❏ task: reorganize one “chunk”

❏ may be interruptible, with loss of work

❏ other operations can proceed

7

Detecting idle time
An architecture

system
events

start

actuator

skeptic

predictor

predictor

stop

predictions

to idle
task

8

Detecting idle time
When to start

❏ Timer

❏ Rate-based

❏ Periodic

❏ Pattern recognition

❏ Adaptive versus static

idle
tasks

detector
events

regular
work

interrupt
finished

start idle (d)

9

Detecting idle time
Duration

❏ Fixed

❏ Moving average

❏ Adaptive increase/decrease

❏ Pattern recognition

❏ “At least” versus “exactly”

idle
tasks

detector
events

regular
work

interrupt
finished

start idle (d)

10

Detecting idle time
Using skeptics to improve predictions

Filtering the stream:

❏ time-of-day

❏ shut off when performing poorly

❏ special cases

Combining multiple predictions:

❏ quorum voting

❏ binomial weighting algorithm

11

Evaluating idle detectors
Mean idle duration

Only consider start time

Measure duration from start to next operation

0 20 40 60 80 100

Mean duration (seconds)

EventWindow-25-IOperSec-0.1
AdaptTimerArithArith-10.0

EventWindow-5-IOperSec-0.1
AdaptTimerGeomArith-10.0
AdaptTimerArithGeom-10.0

MovingAverage-0.1-0.9
PLL2-1

EventWindow-25-KBperSec-4
MovingAverage-1.0-0.9

EventWindow-5-KBperSec-4
EventWindow-25-BusyPerSec-0.01

Timer-5.0
AdaptTimerArithArith-1.0

EventWindow-5-BusyPerSec-0.01
EventWindow-25-IOperSec-5

AdaptTimerGeomArith-1.0
AdaptTimerArithGeom-1.0

AdaptTimerArithArith-0.100
MovingAverage-10.0-0.9
AdaptTimerGeomGeom

EventWindow-25-KBperSec-40
EventWindow-5-IOperSec-5

Timer-1.0
EventWindow-5-KBperSec-40

PLL-1
EventWindow-25-BusyPerSec-0.10

AdaptTimerGeomArith-0.100
AdaptTimerArithGeom-0.100

EventWindow-5-BusyPerSec-0.10
Actual

12

Evaluating idle detectors
Efficiency

For the same data set, compute efficiency:

efficiency = predicted idle time / actual idle time

0.4 0.6 0.8 1.0

Efficiency

0

20

40

60

80

100
M

ea
n

du
ra

tio
n

(s
ec

on
ds

)

13

Evaluating idle detectors
How many operations are affected?

Add duration predictions (and follow them)

Count violations

0.0 0.5 1.0

Mean rate (op/s)

BackoffArithArith-1.0
Average

BackoffArithArith-0.100
BackoffArithGeom-1.0

BackoffArithArith-0.010
BackoffArithGeom-0.100
BackoffArithGeom-0.010

EventWindow 25, IO/sec 0.1:
BackoffArithArith-1.0

BackoffArithArith-0.100
BackoffArithArith-0.010
BackoffArithGeom-1.0

Average
BackoffArithGeom-0.100
BackoffArithGeom-0.010

AdaptTimerArithGeom 0.100:

14

Evaluating idle detectors

0.6 0.8 1.0

Efficiency

0.5

1.0

1.5

M
ea

n
vi

ol
at

io
n

ra
te

 (
op

/s
)

15

Using the detectors for spin-down
Energy savings

Hypothesis: energy savings related to efficiency

0.0 0.2 0.4 0.6 0.8 1.0

Efficiency

0.0

0.5

1.0

1.5

2.0
E

ne
rg

y
sa

ve
d

(k
J)

16

Using the detectors for spin-down
Energy savings

Hypothesis: related to mean idle duration

0 200 400 600 800 1000

Mean idle duration (s)

0.0

0.5

1.0

1.5

2.0
E

ne
rg

y
sa

ve
d

(k
J)

17

Using the detectors for spin-down
Number of delayed operations

Hypothesis: related to violation rate

0.00 0.01 0.02 0.03

Violation rate (op/s)

0

20

40

60

80
D

el
ay

ed
 o

pe
ra

tio
ns

 p
er

 h
ou

r
(o

p)

18

Using the detectors for file system
reorganization

Hypothesis: intrusiveness related to violation rate

0.00 0.01 0.02 0.03

Violation rate (op/s)

0.000

0.005

0.010

M
ea

n
op

er
at

io
n

de
la

y
(s

)

19

Idleness is not sloth
Conclusions

❏ Many opportunities for using idle time productively

❏ Taxonomy of idle time helped guide analysis

❏ Taxonomy of detection methods helped us find new
methods

❏ The detectors can be used to schedule realistic idle
tasks, and we can evaluate how well they work

Contact: golding@hpl.hp.com

1995 Winter Usenix, New Orleans

Idleness is not sloth
Richard Golding, Peter Bosch,*

Carl Staelin, Tim Sullivan, and John Wilkes

Hewlett-Packard Laboratories
* Universiteit Twente

19th January 1995

Slides presented at the Winter Usenix conference in New Orleans from
16–20th January 1995.

This presentation is an overview of our work on using idle time
productively, introducing our approach and presenting a few important
results. A fuller account can be found in the paper published with the
proceedings.

Slides for — Idleness is not
sloth

Richard Golding, Peter Bosch,
Carl Staelin, Tim Sullivan,
and John Wilkes
Concurrent Computing Department
Hewlett-Packard Laboratories

HPL–CCD–95–1
19 January 1995

