
Position pape r for the 4th ACM SIGOPS European Workshop,
Bologna (3–5 September 1990), whose topic was “Fault tolerance
support in distributed systems”.

This paper was subsequently published in Operating Systems
Review 25(1):56–59, Jan. 1991.

Specifying data availability
in multi-device file systems

John Wilkes and Raymie Stata
Concurrent Computing Department
Hewlett-Packard Laboratories
Palo Alto, CA

Technical report HPL–CSP–90–6

1 April 1990

1 Problem statement
Computers are increasing in processing power much
faster than disks are reducing their access times or
improving their bandwidth. This gap in dynamic
performance will continue to widen over the next
several years. There seem to be three ways to address
this problem:

• improving the way in which existing devices are
used

• using multiple devices in parallel to reduce latencies
and increase bandwidth

• making the devices “smarter” by coupling
processing power closely to the storage device.

The DataMesh research project at Hewlett-Packard
Laboratories is investigating all three approaches in the
context of a large, fast, highly functional storage server
design for the needs of cooperating workgroups of
computers (workstations, compute servers, etc) in the
mid-1990s:

• large means in the range of 0.1–10 Terabytes of stored
data

• fast means that getting information from the
DataMesh will be faster than retrieving it from a
similar number of storage devices distributed
amongst the clients

• highly functional means that a DataMesh storage
server will (eventually):

– tolerate processor, storage device, and network
failures

– provide 10:1 scalability in capacity with smooth
incremental growth

– support many different types of structured data
simultaneously (not just flat files)

– take advantage of a storage hierarchy of multiple
device types

– offload data-intensive work from clients
(e.g. image compression, tuple filtering)

– let clients specify the performance and
availability properties of their data, rather than
how to store them

As a basis for our work, we have defined a research model
of a multi-device DataMesh, with each storage device
associated with a moderate-performance computing
element and local RAM (perhaps 20 MIPS and 8–
16 Mbytes by 1995).

Our current research emphasis is on the performance
aspects of such distributed storage server designs.
However, there are some factors that caused us to
explicitly add consideration of high-availability (“fault
tolerance”) into our early deliberations:

An image of a DataMesh used to go here,
but has suffered bit-rot over time, and no
longer prints. Sorry.

Specifying data availability
in multi-device file systems

John Wilkes and Raymie Stata

Concurrent Systems Project
Hewlett-Packard Laboratories
Palo Alto, CA 94304

1 April 1990

2

• In the absence of a major breakthrough in storage
devices, achieving high performance will require the
use of massively-parallel arrays of disks. Since the
failure rate of such arrays is proportional to the
number of disks they contain, the mean time between
failure (MTBF) is usually approximated as:

MTBFarray = MTBFdisk / ndisks

With individual device MTBF times of 150,000 hours
[HP6000], this would lead to a device failure about
once a week for a 1000-disk array.

• Centralizing storage can improve cost-performance,
but it has the opposite effect on data availability: a
failure can affect many more people than would an
outage local to just one workstation.

• The increase in value of information to an
organization, together with the growing trend
toward sharing of communal data by cooperating
workgroups, means that failures can have significant
economic impact.

2 User-specified data properties
Everybody agrees that having data be “highly
available” would be nice, but there is typically little
emphasis on expressing just what this means. In fact, we
assert that the following position is taken by almost all
proponents of high availability systems:

We will provide a set of fault-tolerance mechanisms, and
then educate/cajole/force users into listing the mechanisms
that should be used to achieve their goals.

For example, for a user to take advantage of a mirrored
disk drive on a typical system, they have to put their
files on the portion of the file system that corresponds to
the redundant hardware.
Our position is rather different: we believe that the user
should specify their needs in some technology-
independent manner (e.g. the financial cost of failing to
provide a certain data availability), and then get the
storage system itself to determine how to meet these goals. In
the mirroring example, the user would specify an
availability constraint on the files of interest—and the
system would be free to decide how best to satisfy it.
For lack of a better term, we have christened our
approach user-specified data properties. (The technique
can as easily—and fruitfully—be applied to
performance requirements as to availability needs, but
this will not be described further here.)
Here is a sample availability specification for a file:

maximum downtime: 30 sec
maximum repair time: 1 hour
minimum failure performance: 40% of normal
maximum data loss: 0 bytes
minimum disaster interval: 100 years

The example specification given above might lead to
selecting a parity disk scheme, as follows:

• the no-data-loss constraint would preclude use of
occasional checkpointing of a copy in volatile storage
that might be lost on a power failure

• the maximum repair time would preclude log-based
secondary schemes (e.g. magnetic tape)

• the requirement for 40% of the failure-free access rate
during repair could be satisfied with two-way
mirrored disks or a parity-disk scheme

• the 100 year interval between violations of the
specification would be met by a parity disk scheme
with one parity disk for every m data disks, where,
from [Patterson88]:

With the values given above, the maximum value of
m would be about 30, assuming no account is taken
of non-disk failures (e.g. power supplies, controllers,
cables, etc [Schulze88]).

Exactly which arrangement is used will depend on other
parameters, such as the performance constraints (which
might force the selection of mirroring), or cost
assumptions (such as “choose the solution that uses the
least disk capacity”).
Underlying our choice of specification parameters is a
model of failure behaviour that encompasses the effects
of the initial failure, recovery, and subsequent repair.
The following graphic outlines the effects of a single,
isolated failure (in this case, to one of a pair of mirrored
disks):

Under normal operation, the specification calls for a
performance behaviour PN (e.g. via throughput or
response time constraints) and a mean time between
violations of TN.

———————
m(m+1)×MTTRdisk

(MTBFdisk)2
MTBFdata =

Mend
time
Tm
TmTr

Normal

Non-functional

Mend
perf. Pm Recovery time

Tr

Recovery
perf. Pr

Failure!

operation

Detection time
Td Elapsed time

Baseline perf.
PB

Normal perf.
PN

Replacement
drive

Down time TD

3

On a failure, the system proceeds through a number of
stages, with characteristic durations as follows:

• detection time Td: time to notice that a fault has
manifested itself; it is usual to assume that this time
is vanishingly short

• mend time Tm: physical repair time, such as replacing
a faulty unit, or simply switching to a spare device.
This can range from milliseconds (with an online
spare) to days or even weeks (if a unit has to be sent
away to be repaired).

• recovery time Tr: the time to bring the system back to
normal operation after the mechanical repair has
been accomplished. This usually involves
regenerating redundant information, and sometimes
allows continued operation as the recovery is
performed (e.g. with a mirrored disk). Recovery
times can range from minutes to hours, depending
on how much information has to be restored, and the
relative priorities of ongoing operations and
recovery.

• failure time TF = Td + Tm + Tr: time before normal
operation is restored

• downtime TD: time before the system meets minimal
user specifications (in the case of the mirrored disk
example above, TD = Td, since operations can
continue immediately on the second drive, but in
some examples TD might occur at the end of Tm, or
even part-way through Tr).

In addition to the time parameters in the model, there
are a number of performance specifications of potential
interest:

• normal performance PN: the performance specification
for normal (failure-free) operation

• mend performance Pm: the performance specification
during the physical repair period

• recovery performance Pr: the performance during the
period when redundant data is being restored

• failure performance PF = min(Pm, Pr)

• baseline performance PB: the minimally-acceptable
performance that can meet user “degraded mode”
operation requirements. Continuous operation is
possible if PF PB

We expect that users will get most of what they need
from the model from specifying limits on TD and TF, and
minimum values for PN and PB.

Three other sorts of constraints are also important:
• maximum data loss: amount of “already-written” data

that may be sacrificed during the recovery process;
specified as one of:

– percentage of total data

– number of I/O operations
– bytes of data

• disaster interval: minimum period before violating the
availability specifications

• ”fuzziness“ parameters: we have presented the
resource needs so far as if they were absolutes. Given
that failures are themselves probabilistic in nature, it
may be more appropriate to provide probabilistic
constraints in the specifications, such as “meet these
availability goals with 90% confidence”. (There are
many examples of this in the civil engineering world,
such as specifications for “hundred year flood
barriers”.)

Finally, the issue of the cost of under- or over-compliance
needs addressing. Since availability is important,
presumably there is some cost associated with failure to
comply with the specification; by the same token, there
may be some benefit from being more aggressive than
required. To allow the system to decide which goals are
the most important, a cost/benefit model is needed for
deviations from the specifications.
There are two obvious kinds of cost that have to be
modelled:

• direct, or resource costs: the cost (in megabytes, disks,
dollars, etc) of providing the storage needed to meet
the users’ constraints.
It is easy to give the system the raw data to calculate
this. In the absence of other information, it would be
reasonable to set a policy of choosing the lowest-
direct-cost solution for a given set of constraints (e.g.
don’t use triple redundancy if simple mirroring will
do).

• indirect, or corollary costs: economic consequences
external to the system of violating the specifications
(e.g. losing the payroll file). Such costs are likely to be
non-linear with the degree of violation. For example:

We should make it clear that these are our ideals;
pragmatic considerations in the execution of the
constraint models needed will doubtless limit the search
space that can be explored. (For example, a simple
linear—or even static—approximation to the cost model
may be appropriate.)

Specification under-
achievement amount

Specification over--
achievement amount

Cost

Benefit

4

3 Benefits
The benefits of this approach are many-fold:

• ease of use: the user can achieve their availability (and
performance) objectives without needing to know
about how the storage is configured, what the
characteristics of the individual devices are, or what
set of mechanisms are the best ones to use

• better resource utilization: since the system has
information about the exact mix of components
available, it can do a better job of allocating resources
to meet needs than could a human

• dynamic adjustment: the system can dynamically
adapt to changing user needs and available storage
capacity

• take advantage of new technology: as new storage
devices become available, the system can make full
use of their characteristics (e.g. there is a steady trend
toward more reliable disk drives: this scheme can
adapt to a mixture of old and new drives without
dropping back to the lowest-common-denominator)

4 Research issues
The promise of this approach seems clear, but there are
a number of research issues that still need to be
addressed. For example:

• Is the set of parameters we have described necessary
and sufficient?

• Is this approach (and our parameters) sufficiently
simple for users to understand?

• What set of cost metrics are appropriate to prevent
users demanding 100% availability with zero
downtime for everything?

• What are good heuristics to solve the resource
allocation problems involved? (The equivalent
performance-related assignment problems have been
shown to be NP-hard.)

• How many (and which) simplifications can be made
in the cost modelling and specification to achieve the
twin goals of adequate match to needs and
minimum-overhead allocations?

• What are appropriate ways to handle the availability
implications of client caching?

• What is the set of mechanisms that should be
considered?

• How can users express their needs in a convenient
way?

5 Related work
IBM’s System-managed storage model [Gelb89] is in some
ways similar. The emphasis of the IBM approach is on
allowing a system manager to choose a small suite of

mechanisms, and then having the system operate within
the constraints these imply (e.g. cylinder and disk
placement is left to the system, but the choice of
mirroring over parity disks is made by hand). We go
further, and suggest that the system should itself
proactively select the mechanisms to meet performance
and availability constraints. Our scheme also allows the
selection of mechanisms to vary over time (e.g. as a new
more cost-effective device becomes available, or as new
usage patterns develop).
Work on the RAID project at UC Berkeley is addressing
the availability characteristics of disk arrays and
checksum/parity disk schemes (e.g. [Schulze88,
Chen88]).

6 Conclusions
We believe that specification of user-oriented measures
for reliable systems is the key to ease of use, efficient
resource utilization, and performance optimization.
Initial investigation suggests that a relatively small
number of parameters can be used to define availability
goals. It also seems that interactions between availability
and performance specifications can be described in a
fairly clean way. Although the approach shows promise,
there are still several hard research questions to be
answered, and doubtless many interesting things to be
learned.

References
[Chen88] Peter Chen, Garth Gibson, Randy H. Katz,

David A. Patterson and Martin Schulze, Two papers on
RAIDs. Technical report UCB/CSD 88/479,
Department of Electrical Engineering and Computer
Sciences, UC Berkeley, December 1988.

[Gelb89] J. P. Gelb, “System managed storage”. IBM
Systems Journal 28(1): 77–103, 1989.

[HP6000] HP Series 6000 Models 330S and 660S Mass
Storage Systems: Technical data. Part number 5952–
0631. Hewlett-Packard Company, 1989.

[Patterson88] David A. Patterson, Garth Gibson and
Randy H. Katz, “A case for redundant arrays of
inexpensive disks (RAID)”. Proceedings of the ACM
SIGMOD Conference (Chicago, Illinois) 1–3 June 1988.

[Schulze88] Martin E. Schulze, Considerations in the
design of a RAID prototype. Technical report UCB/
CSD 88/448, Department of Electrical Engineering
and Computer Sciences, UC Berkeley, August 1988.

