
eOS – the dawn of the resource economy
John Wilkes, Patrick Goldsack, G. (John) Janakiraman,
Lance Russell, Sharad Singhal, and Andrew Thomas
<wilkes@hpl.hp.com>
Hewlett-Packard Laboratories, Palo Alto, CA 94304
21 May 2001
Achieving the benefits of a resource economy, which supports the execution of services wherever and whenever is most convenient, cost-effective,
and trustworthy, represents the next big computer systems research opportunity. That is, we believe that the emphasis in the operating research
community should move away from working out how to extract a few more percentage points of speed from individual computing resources, and
focus instead on how to size, provision, and manage those resources to serve the needs of a rapidly diversifying set of services.

HP Laboratories are embarking on a major endeavor to pursue this, and this position paper outlines our view—and a taxonomy—of some of the
issues involved, and highlights some of the research opportunities that it presents. We are actively seeking research partners to collaborate with us.

Note: this is a longer form of the position summary that is to appear in the proceedings of HotOS-VIII (Schloss Elmau,
Germany, 21-23 May 2001).

Scene: a Corporate IT director’s office,
the day before a company board meeting.
The COO, Chris, knocks on the door, and
comes in without waiting.

Chris: Jean: what’s all this about us
getting billed for computing resources in
Singapore? How am I going to explain
that? We don’t have a facility there!
What’s going on here?

Jean: Calm down! It’s ok—really.

Chris: Not good enough. You know I have to give a bullet-proof
answer tomorrow … so you don’t have much time.

Jean: Ok, ok. Do you remember the end of the last month? We
had the R&D guys needing to do their protein shape
calculations to meet an FDA deadline …

Chris: Yes—but weren’t they using some cheap compute cycles
in Prague that you’d found for them?

Jean: … and then the marketing team wanted a new computer-
generated-graphics commercial in time for Comdex that
included film of our Malaysian manufacturing plant as a
backdrop …

Chris: Yes—but you said that wouldn’t be a problem …

Jean: … and the financial results that you are holding, by the
look of it, needed some decision analysis that we don’t usually
do, in collaboration with our Japanese partners …

Chris: Yes—but you told me …

Jean: Please—if I could finish?

Chris: Sorry. It’s been a bit hectic today.

Jean: No way could the Prague facility keep both the chemists
and the video team happy: both the computation needs and
storage space requirements were way over the top. And the
Malaysian plant has nothing, really, so it looked like it would
cost us a fortune. … All because those geeks couldn’t get their
timing right.

Chris: [Sigh.] I must have told them a dozen times …

Jean: But then our eOS system discovered that we are co-buying
storage space for the Malaysian lot-failure analysis data with
our Hong Kong subsidiaries in Singapore; and it checked out
the effects of migrating the data back to Prague and the
computations to Singapore.

Chris: But wouldn’t that have been a huge hassle to get right?
Moving all that data?

Jean: Not at all—I didn’t even find out until 2 days after it had
happened!

Chris: What do you mean? You let it make a decision like that?

Jean: Sure! It even reported that the average response time for
our OLTP jobs were 30% better than usual—they usually get
hammered by the decision support people at the end of the
month. Probably because of the time-zone effects. If you look,
I think you’ll find we even saved money - we used to have a
team of people doing this stuff, trying to keep one step ahead of
the next wave of demands. They could never keep up, so the
customers were always unhappy—and they were people who
we couldn’t really afford to have spending their time on that
when there were more important things they could do for us,
like rolling out new services.

Chris: But what about the users while things were being
changed?

Jean: They hadn’t even noticed! My biggest headache is our
accounting systems: they make the resource location visible at
your level—but nobody else cares.

Chris: You didn’t even have to come up with this solution
yourself?

Jean: Nope. I didn’t do a thing. eOS did it all!1

1. We briefly toyed with calling our program “e-kiN” for the slogan “it just did
it!” but we decided that the Nike Corporation might not be amused. So now
we call it eOS, after the Greek personification of the dawn.

2

1 The resource economy
The proliferation of computers and the Internet into all aspects
of commerce and society is well under way. Many of the
fundamental technical issues to do with the components of
modern computing systems are either solved, or well in hand.
It is our position that the next wave of innovation—and hence
research opportunities—lies in the field of aggregating pools of
computing resources in support of the ex1ypplosion in scale,
complexity, and diversity of computing services. The eOS
program at HP Labs is targeting the technical barriers to this
happening.

Besides the technical facilities implied by the scenario
described above, what else will have to happen to make this
vision become real?

• Resources must become fungible: which in turn implies that
services (and their users) must be willing to trust that the
resources they obtain from a shared pool cannot be tampered
with by others—including their competitors.

This trust can be acquired in a number of ways. One approach
is developing clever—but computationally expensive—
cryptographic solutions for operating in a largely untrusted
infrastructure (e.g., [Kubiatowicz2000] and [Farsite2001].)
Instead, we believe that commercial systems will be able to
benefit significantly from exploiting a much greater degree of
trustworthiness of IDCs than the OceanStore project proposes.
Today’s “private intranets” is a classic example of this: the
telcos are already providing the illusion of a dedicated network
resource from their shared infrastructure.

• Data center computational resources must become “liquid
commodities”, and global markets develop for them.

This seems likely: electronic business exchanges for a wide
variety of other goods are becoming of considerable
importance, and computing resources are a natural application
for this technology.

• Pervasive performance upgrades to the public internet and
private intranets must be able to eliminate the need for most
real local computation (but not storage, and not PCs).

This seems to be happening apace. Although the “last mile”
looks likely to remain expensive for a while longer, long-haul
networking is becoming quite cheap: indeed, the percentage of
dark optical fibre is remaining roughly constant, thanks to the
deployment of wave-division-multiplexing.

• Outsourcing and resource consolidation into large,
concentrated internet data centers (IDCs) will continue.

This trend is favored by the economies of scale associated with
internet access, security, power, cooling, and management that
such centers represent.

• Resource demands will fluctuate faster than any single
supplier can handle.

The Internet represents an effectively infinite potential load for
almost any service, so a solution that can exploit a federation of
resource providers will be necessary. In fact, we believe that it
will be necessary for the eOS solution to manage resource
demands that scale over roughly a 500 000:1 range—i.e., the
range from one processor to about 10 data center’s worth of

demand for a single service. Ultimately, the only architectural
limit should be the amount of silicon connected to the Internet.

• Unmodified applications must continue to be supported.

Although new applications and service types may spring up
that can better exploit the new resource model, experience has
taught us that backwards compatibility is the key to a
successful adoption.

• Increasing the cost-effectiveness of resource provisioning by
a factor of about 2 over the best-available solutions today
will be sufficient to get this kind of solution adopted.

Although large, this represents a huge improvement on the few
percent advantages that are often reported for individual
technology improvements at the computing component level.
Of course, the benefit will have to continue to scale up as the
underlying technology becomes faster and more cost-effective:
that is, it must be a multiplicative benefit on top of Moore’s-law
changes in computing and equivalent improvements in storage
and networking, not a one-time addition.

• Finally, success will come to those businesses (and
researchers!) who can provide stable, predictable business
responses in the face of rapidly-fluctuating customer
demands, at reasonable cost.

This has been supported by our research work in storage-
system management [SSP2001], which began with a strong
emphasis on cost minimization, and later discovered customer
preference for predictable responses to requirements—even at
the expense of greater system cost.

2 The eOS architecture
eOS is not a single artifact: it is better thought of as a set of
related research activities that are striving towards a common
vision over the next few years.

It should be emphasized, however, that it is possible to make
progress towards an eOS system without requiring all of the
aspects to be addressed. As working in the storage management
domain has shown, solutions to portions of the lifecycle can be
rolled out without the entire thing being in place.

Occasional examples from HPL’s storage management work
are used in what follows to illustrate that the eOS ideas already
have antecedents in at least one field of endeavor [SSP2001].

2.1 Principles
To help achieve convergence, we’ve identified some
underlying principles that we believe are fundamental to all our
work, and devised an overall architecture that divides up the
problem space in a way that will allow contributions from
many sources to be integrated into the larger whole.

• ΙP will be the network service abstraction required by all
services, including high-speed, local storage access.

• Heterogeneity of hardware, software and operating systems
across resources is a given.

• Federated, nested structures are the only way to manage the
required scale and business demands.

• Predictability is the single most important business metric to
achieve—it is even more important than cost. This means

3

that QoS guarantees, or service level agreements (SLAs) are
necessary.

The functions performed by the eOS architecture can be
grouped roughly as follows:

• Service-to-resource mapping: what resources are needed by
this service? when are they needed? and where?

• Resource provisioning: determining where to obtain and
how to allocate the resources (planning), and how to set
them up for use (configuration).

• Monitoring, enforcement: ensuring that security, QoS, etc.
goals are met; monitoring the service level agreements; and
deciding what should change as a result of this data.

2.2 The eOS system life cycle
We have organized our architecture according to a lifecycle-
based taxonomy. We first developed this concept in the storage-
management space [Alvarez2000], where it has proven
effective at providing insight into how to design tools that can
support each stage effectively.

The figure above illustrates this lifecycle, and annotates it with
some examples of the research work we have been performing
in the storage-system-design space recently.

2.3 The eOS management architecture as a control system

By design, eOS works hard to avoid adding new APIs in the
critical path: it manages existing services and resources,
augmented by an eOS agent/control interface if necessary. This
is essential if it is to be able to handle the diversity of
heterogeneous systems that will continue to be the norm.

A management architecture needs to have points at which it can
execute control—or else it cannot manage. To this end, our goal
is to develop mechanisms that either exploit existing control
points in the critical path, or insert new, minimalist ones. The

diagram below represents the relationship between the control
point and the “knob-settings” that tell it what to do.

The eOS architecture is designed to monitor the overall system
behavior, and adjust the knob settings at appropriate intervals
(this is where control theory comes in handy).

This architecture applies at many
timescales: upper-level “policy
decisions” are enforced by lower-
level “mechanisms”—and become
mechanisms for enforcing yet higher-
level policies. This applies all the way
out to the business-cycle scale.

In some cases, the knob settings are so large that they have to
be cached (e.g., the metadata layout for a large storage system).

2.4 The eOS resource architecture
The eOS architecture is divided it up into the
four topic areas listed on the left.

2.4.1 Resource pools

A resource pool provides a scalable set of
abstract resources, built from the physical

resources of one or more data centers, and capable of being
deployed against a wide range of performance, reliability, cost
and security constraints. Resource types include:

• Computation (CPU, RAM, I/O cards, reconfigurable CPUs, …)

• Storage (on-line, off-line; local, remote; caches, …)

• Networking (internal, private intranet and public Internet;
SAN; DNS, …).

2.4.2 Resource allocation

This is the process of deciding how many resources of what
types, configured in which ways, will be needed to meet a set
of service needs, and where those resources should be obtained
from.

The process can be viewed as a kind of (NP-hard) bin packing,
made more difficult by the desire to attain business goals, such
as maximizing the cost-effectiveness of the resource
deployment, balancing the spare capacity to handle short-term
overloads better, and leaving maximum flexibility for future
demands. Inputs to this process include:

• Service descriptions; performance requirements for the
services at the service level (SLAs), and business goals.

• Constraints on the solution, such as geographic restrictions,
and legal, security, and availability requirements.

• Existing resource allocations, and information on recent
changes in requirements, environment, etc.

Obsolescence

Configure /
reconfigure
Configure /
reconfigure

(Changing)
business
requirements

• automatically design a system
• assign data to devices
• plan data migration
[Alvarez01, Hall01]

• characterize appn

• model devices
• predict device

performance
• express QoS
[Borowsky97]

• execute data migration
• QoS enforcement
• scalability
• file and block access
[Golding99, Amiri00]

automatically
configure devices

• what to measure
• what it means

Design /
redesign
Design /
redesign

MonitorMonitor Running
system

Running
system

eos management
system

needs assessment

• provisioning, planning

• assignment

• configuration

• monitoring

• enforcement

• reaction

eos-managed system

Physical resources
(cpu, RAM, storage, network, …)

Physical resources
(cpu, RAM, storage, network, …)

Virtual resources
(OS, LVM, file system, dbms, …)

Virtual resources
(OS, LVM, file system, dbms, …)

Services
(…)

Services
(…)

ApplicationsApplicationsresource
requests

control

monitoring

optional

cache

optional

cache

Decision repository
(aka “metadata”)

Decision repository
(aka “metadata”)

Upper-level
component

Upper-level
component

Lower-level
component

Lower-level
component

Critical-path elementCritical-path element

Decision-making
system

Decision-making
system

Decision
enforcement
(very fast)

eos will exploit
existing elements
wherever possible

Hierarchically-organized
for scalability;
replicated for resilience
and load balancing

“Knob-setting”:
communicates
decisions; handles
cache-coherency;
(slow to fast)

Management
API (slow)

Redesigns system response
to accommodate demands

<1ms <0.1s <10s <1hour
Response time

eos resource
architecture

• pools

• allocation

• configuration

• service mgmt

eos resource
architecture

• pools

• allocation

• configuration

• service mgmt

4

Actions that are taken in response to these inputs include:

• Mapping the service requirements into the resource needs
they represent.

• Choosing possible allocation plans, taking the inputs into
account.

• Negotiating with (potential) resource suppliers, including
the local resource pools, and choosing which plan to apply.

2.4.3 Resource configuration

Given the resource allocation (or “design”) that comes out of
the resource allocation step, the goal of resource configuration
is to establish that design in a running system. The two steps are
separate to allow them to operate on different timescales, and
because resource configuration usually proves to be a
somewhat simpler problem than resource allocation.

The input to the configuration step is a description of desired
end state, together with access to the current configuration.
(That is, resource configuration tools are used both for initial
configuration and to changing an existing setup.) The first task
of this step is to determine what changes are needed:
“configuration diff” if you like. The actions taken then are a
function of the type of resource being configured:

• For compute resources: load software (OS image,
applications, …); and set the configuration (IP address,
accounts, …).

• For network resources: configure switches, routers,
firewalls, etc. to create secure network partitions

• For storage resources: configure disk arrays; SAN switches;
host LVMs; file-system mount points; access paths, etc.)

That some of these configuration problems are technically
challenging in their own right is demonstrated by our work on
the storage migration problem [Hall2001].

2.4.4 Service management

The steps described above operate primarily at the resource
level. But since the intent of eOS is to support services, it has
to have mechanisms to reason about them, and the effects that
its decisions (are going to) have on those services. To achieve
this, eOS maintains models of the services it supports. These
service models are used for service-lifecycle management;
establishing new service instances; provisioning for the
services; and for monitoring the service behaviors (including
service level objectives, failure detection and recovery).

The models describe how the service is composed from a
collection of components; the resource demands of the service,
and how these scale with service load; and data on interactions
between service instances. Ideally, of course, these things will
be known a priori. But life is rarely like that, and the very
diversity of service types will make it unlikely to be achievable
in any case. As a result, a significant research topic in eOS is
determining such service properties experimentally, while they
are “live”.

The HP e-speak architecture [Karp2000] is one example of a
system that manages services; eOS manages the resources that
those services execute on. We are betting that the provision of
a managed resource pool at the eOS level will be at least as
pervasive as scaling services by means of service-level
aggregation. We expect that the resource-level approach will

scale to a wider range of service types with less implementation
effort, although specialized services (such as email) may be
able to provide their own management as well.

2.4.5 Virtual resource management

Many eOS systems will be deployed in the presence of existing
management entities. A high-level example from the storage
domain is [StorageNetworks2001], but low-level examples
also exist, such as the HP AutoRAID product, which manages
its own storage hierarchy internally [Wilkes1996].

A useful way to think of these entities is as providers of new,
nested resource types, with their own—typically rather
richer—behaviors than stand-alone physical resources. eOS
simply treats them accordingly.

Similarly, an important—and so far neglected—research thrust
for eOS is in the area of federated services. eOS systems will
have to negotiate with their peers to obtain resources to meet
their own obligations. This is complicated by trust,
administrative, and financial boundaries—but a solution will
represent a big step towards the resource economy [Bhoj1999].

3 Key research questions
The eOS problem area represents a huge
opportunity for high-quality, interesting
research work. And we are not alone in
believing this: several other research teams
are looking in similar directions (e.g., UCB

OceanStore [Kubiatowicz2000] and Ninja [Gribble2001],
Microsoft [Farsite2001], and IBM [Océano2001]).

In the space that remains, the rest of this position paper
provides the briefest of outlines of just some of the highest-
impact research topics in the eOS domain. The list is not meant
to be exhaustive, but to give a flavor of the types of issues that
it suggests be addressed.

3.1 Resource-pool management
Before resources or services can be managed, they must be
found and their properties determined (e.g., security,
performance, reliability, …)—a process known as discovery. In
use, their behavior must be monitored (e.g., for performance,
utilization, availability, …). All this has to be done
automatically, in the face of resource and service types that
have not yet been met, partial system failures, and occasionally
disconnected operation.

To provide control, appropriate control points (actuators) need
to be located or inserted; and appropriate parts of control-
theory need to be developed for the kind of hands-off, nested
cycles that resource management requires.

App
lic

at
io

ns

&
Ser

vi
ce

s
App

lic
at

io
ns

&
Ser

vi
ce

s
App

lic
at

io
ns

&
Ser

vi
ce

s
App

lic
at

io
ns

&
Ser

vi
ce

s

CPU Network StorageOS

eos: resources
Resource model
Allocate resources
Deploy service
components
Monitor resource
status & usage
Enforce resource
requirements &
SLAs

Resource model
Allocate resources
Deploy service
components
Monitor resource
status & usage
Enforce resource
requirements &
SLAs

Discovery Monitoring

Service model
Creation of services
Advertising and
discovery of services,
composition of services
for business entity or
purpose
Authentication and data
models for service
Brokering, billing for
service

Service-to-resource requirements mapping

e-speak: services
Authentication Brokering

Discovery Monitoring

eos research
questions

• pools

• allocation

• configuration

• service mgmt

eos research
questions

• pools

• allocation

• configuration

• service mgmt

5

The need for business predictability translates directly into a
need to enforce QoS goals and SLAs, as well as requiring more
work in the economics of QoS-based system management (e.g.,
in appropriate pricing mechanisms for controlling user
behavior in an environment where there is effectively infinite
demand).

We will need new end-to-end security systems for secure
virtual environments, VLANs, OS partitions, source
encryption, key distribution, payments, … and so on.

3.2 Resource allocation
Before a service can be begun, the set of resources it needs must
be known, more or less. This must be a prediction, derived from
mappings from service-level demands to resource demands.
Such mappings need building, validating, and tuning from prior
service executions—automatically. Self-tuning, robust
statistical/econometric models will also be necessary for
predicting future service demand trends.

Determining the “best” way to allocate resources to meet
service demands requires the ability to search a space of
possible allocations, and predict their effects, taking into
account business objectives and constraints (time, scale,
security, availability, QoS, …). We hope to leverage our work
in this area for block-level storage systems (e.g.,
[Borowsky1997]) to the wider eOS problem domain.

The process of obtaining resources will require automated,
multi-site provisioning negotiations, across a federated set of
resource providers.

3.3 Resource configuration
Although setting up a set of resources to meet a designed
configuration may be simpler than designing the configuration,
it still not a trivial problem—especially at the scales we are
contemplating, and in the face of requirements that the system
remain operational during changes that must happen in a
coordinated manner across multiple sites, with little or no
human involvement, across a heterogeneous range of resource
and service types, and in the face of near-arbitrary failures
[Golding1999]. These are all hard problems. Their confluence
is particularly interesting.

3.4 Pervasive architectural issues
We think the best way to manage services (and resources, for
that matter) is to start with a rich, extensible, common
description model that encompasses everything that is used
across the entire eOS suite: demands, services, resources,
configuration constraints, discovery, current state, changes,
deployment, life-cycle, SLA etc. Given such a model, it is
possible to build tools that each perform one function: that is,
the model is the moral equivalent of the text streams that made
UNIX pipes so effective a composition mechanism.

In the storage-management domain, our own modeling system
(called Rome) handles some of these issues: it can represent
goals (for quantifying the QoS/SLA requirements, objectives,
and constraints); system descriptions (for capturing the current
state, and capabilities); models (for predicting the future);
measurements (to capture system behavior); and changes
(plans and techniques for affecting the result).

4 Conclusions
The eOS vision builds on existing research work in a wide
variety of areas. We think it represents a compelling, practical
vision of what a future resource economy could be like, offers
an architecture that we think will get us there, a path that allows
incremental deployment in real systems, and is a rich source of
research topics whose solutions will be of vital practical
importance.

We hope you agree—and we are actively seeking research
partners to help make the vision reality. Just remember the
slogan: eOS did it all!

Acknowledgements

Many people contributed to the ideas that form the basis of this
paper including: Rich Friedrich, John Manley, Patrick Scaglia,
John Sontag, Hans Stork, Simon Towers, Alistair Veitch, and
the past and present staff of HPL’s Storage System Program.

References

[Alvarez2000] Guillermo Alvarez, Kim Keeton, Arif Merchant, Erik
Riedel, John Wilkes. Storage systems management. Invited tutorial
presented at SIGMETRICS 2000 (Santa Clara, CA, June 2000).
Available from: http://www.hpl.hp.com/SSP/papers .

[Bhoj1999] Preeti Bhoj, Sharad Singhal, and Sailesh Chutani. SLA
management in federated environments. Proc. 6th IEEE/IFIP Intl.
Symp. on Integrated Network Management, (Boston, MA, May 24-
28, 1999). Available at
http://www.hpl.hp.com/techreports/98/HPL-98-203.html .

[Borowsky1997] E. Borowsky, et al. Using attribute-managed
storage to achieve QoS. Presented at 5th Intl. Workshop on Quality
of Service, (Columbia Univ., New York, June 1997). Available at
http://www.hpl.hp.com/SSP/papers

[Farsite2001] Microsoft Research. Farsite: Federated, Available, and
Reliable Storage for an Incompletely Trusted Environment.
http://www.research.microsoft.com/sn/Farsite/ (Jan. 2001).

[Golding1999] Richard Golding and Elizabeth Borowsky. Fault-
tolerant replication management in large-scale distributed storage
systems. Proc. 18th IEEE Sumposium on Reliable Distributed
Systems (SRDS'99) (Lausanne, Switzerland, 19-22 October 1999).

[Gribble2001] Steven D. Gribble, et al. The Ninja architecture for
robust Internet-scale systems and services. To appear in Computer
Networks on Pervasive Computing; available from
http://ninja.cs.berkeley.edu/pubs/pubs.html (Jan. 2001).

[Hall2001] Joseph Hall, Jason Hartline, Anna R. Karlin, Jared Saia
and John Wilkes. On algorithms for Efficient data migration. Proc
12th ACM-SIAM Symposium on Discrete Algorithms (SODA),
Jan. 2001 (Washington, DC).

[Karp2000] Alan Karp. E-speak E-xplained. HP Labs technical report
HPL–2000–101, Aug 2000. Available at:
http://www.hpl.hp.com/techreports/2000/HPL-2000-101.html

[Kubiatowicz2000] John Kubiatowicz, et al. OceanStore: an
architecture for global-scale persistent storage. Proc. 9th
ASPLOS, pp. 190–201 (November 2000).

[Océano2001] IBM Research. The Océano project.
http://www.research.ibm.com/oceanoproject/ (Jan. 2001).

[SSP2001] HPL Storage Systems Program.
http://www.hpl.hp.com/SSP/ (Jan. 2001).

[StorageNetworks2001] Storage Networks, Inc.
http://www.storagenetworks.com/content/home/ (Jan. 2001)

[Wilkes1996] John Wilkes, Richard Golding, Carl Staelin, and Tim
Sullivan. The HP AutoRAID hierarchical storage system. ACM
Transactions on Computer Systems 14(1):108-136, February 1996.

