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1  Introduction
The Pantheon simulator was designed to support the rapid exploration of design choices in
storage systems and their components such as disks, tapes and array controllers. It has been
functional in some form or another since summer 1992. Evidence for its usefulness include its
successful application in a number of projects, such as:

• the TickerTAIP parallel RAID architecture [Cao94b]—from which the simulator got its
original name (we have since rechristened it to avoid confusion);

• an analysis of idle-period detection and prediction algorithms [Golding95];

• the HP AutoRAID advanced disk array technology [Wilkes96];

• performance and availability analyses for AFRAID—a frequently redundant array of
independent disks [Savage96].

This document describes the simulator and some of the philosophy behind it. The intention is to
provide an introduction to Pantheon to anybody who might be contemplating using it, as well as
some idea of its capabilities for people who may see output produced by it.

1.1 Document structure

The remainder of this document is organized as follows. It begins with a high-level overview of
the elements of the Pantheon simulation suite: the simulator itself, the support libraries and tools,
and a simple example of how Pantheon might simulate a simple disk model. It is followed by a
more in-depth descriptions of the standard Pantheon simulator components, and the library
components that support them. This is followed by a description of how a simulation is
constructed and executed. The paper closes with some disclaimers, general comments, and a
bibliography.

Several additional documents describe parts of the Pantheon support infrastructure: most of the
details of these elements are deferred to those documents, rather than repeated here. As always,
the source code is the definitive reference.

2  Overview of the Pantheon suite
There are two main parts to the Pantheon suite: the simulator itself, and a set of support libraries
and tools that assist the generation, execution, and analysis of simulation runs.

2.1 The Pantheon simulator

The Pantheon simulator proper is constructed from a rich set of primitive simulation components
(a “kit of parts”), together with infrastructure to glue these together to configure and execute a
simulation. Several disk-level I/O traces are available to feed into simulations, and the package
includes a set of analysis tools that can summarize the results of simulation runs.

Pantheon’s simulation modules are written in C++, compiled (optimized if you wish), and linked
together to make a single Pantheon executable program. Using compiled building blocks of this
form means that simulations execute at full speed: the runtime cost of linking the components
together is just a C++ virtual function call. This document surveys the “standard” set that is
provided as part of the Pantheon release. In addition, new components can be added, or existing
ones extended, to meet particular needs.
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A compiled implementation provides good runtime performance, but can be limiting in terms of
configuration flexibility. To address this, Pantheon uses the interpreted language Tcl
[Ousterhout94] to control which simulation modules are to be instantiated, and how they should
be connected together and parameterized. Since Tcl is a full programming language, arbitrarily
complicated configuration decisions are possible: for example, it is possible to calculate how
many disk drives an array needs to accommodate its load as a function of its redundancy
algorithms, rather than having to precompute this. The net result is that Pantheon achieves both
great configuration flexibility and good execution-time performance.

2.2 The Pantheon libraries

Much of the Pantheon infrastructure is included in a set of libraries, structured as separate entities
to allow their contents to be reused. The main ones are summarized here: more details are in
section 4.

2.2.1 Raphael

Raphael is a lightweight coroutine package that supports the thread model used by Pantheon and
its notion of simulated time. It is based on the QuickThreads package from the University of
Washington [Keppel93b] and offers similar functionality to the tasking library [ATT89] that was
used in the earlier versions of the simulator.

Code executes in a Raphael thread until either (a) it relinquishes the processor by blocking on a
synchronization object such as a semaphore, or (b) it asks for simulated time to be advanced for
it. There is no preemption or time-slicing. A blocked thread becomes eligible to run when the
synchronization object on which it is waiting releases it. A delayed thread becomes eligible to run
when the global simulation time advances to the moment it was waiting for. Simulation time
advances only when there are no more threads ready to run at its current value—that is, they are
all blocked or waiting for time to advance. More details are provided in a separate document on
the Raphael library [Golding95b].

2.2.2 Lintel

Lintel provides a set of useful objects for handling statistics, error and result reporting, random-
number generation, data structures such as queues and heaps, storage-management for small
C++ objects, and so on.

2.2.3 SRTlite

The SRTlite library provides the interface to the disk I/O traces originally gathered by Chris
Ruemmler and described in detail in [Ruemmler93]. The library provides facilities for merging
multiple traces together, scaling and filtering traces, and a rudimentary synthetic trace-generation
facility. More details are provided in separate documents on the SRTlite library and its use
[Abram95, Ganger95].

In addition, a rudimentary trace replayer has been written to take the SRT traces and replay them
against one or more real disks [Soepenberg95].

2.2.4 libckpt

Some simulations can run for a very long time; if a crash happens all this work can be lost. In
addition, some defects only manifest themselves after a considerable amount of runtime, and it
would be convenient to be able to restart a debugging run just before the bug manifests itself. To
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address both of these concerns, the libckpt library allows a simulation to take checkpoints of itself,
from which execution can be resumed at a later time if needed.

2.3 Pantheon support tools

The libraries provide C++ code that can be linked into the Pantheon simulator. The support tools
are stand-alone programs or families of scripts that provide additional runtime support for
Pantheon executions.

2.3.1 runPantheon

Although the simulator takes only Tcl expressions as arguments, these are sometimes rather
unwieldy, and the runPantheon script attempts to simplify much of the complexity by providing
a convenient “front end” to the simulator itself: parsing simple command-line switches, and
making simplifying (but convenient) assumptions about the structure of a simulation.

2.3.2 DQS support

DQS, or Distributed Queueing System, is a simple batch-processing facility designed at Florida
State University [Green93]. We use it to execute the potentially large set of simulation runs that
represent a high-level experimental investigation: it farms out the simulation runs to a cluster of
machines that are willing to act as processor-cycle-servers. Support for DQS is built into
runPantheon (the –Q flag triggers it).

2.3.3 Adze and Tongs

A typical use of the simulator is to generate a set of simulator runs that vary parameters and
workloads across the domain of interest. The Adze tools support simple numerical summarizing
of the set of data that results; the Tongs tools provide a great many options for extracting and
displaying the same data in graphical form. More details about the Tongs tools are provided in a
separate document [Golding95a].

2.3.4 Oculus

The primary output of the simulator is one or more results files containing numerical data about
the internal state of the simulated system, event frequencies, timing information, and so on. It is
also sometimes useful to peek into a running simulator to watch it in action—and this is what
Oculus allows. When it is enabled, a separate Tcl-based graphical viewer allows real-time
visualization of a Pantheon simulation, displaying running summaries of selected statistics. More
details are provided in a separate document [Aicheler96].

2.4 Pantheon in action

The intent of this section of the document is provide an overview of how a Pantheon simulation
fits together, before diving into a detailed description of all its components.

About the simplest model possible is shown in Figure 1. Even in this simple a system, we can see
many of the components of the simulator. Working from the top of the picture downwards, we
can identify the following components:

• Experiment: controls the execution of the simulator by allowing a batch of work to be
processed before a snapshot of the results is taken. Also decides when the run is over.

• Host: represents a processor that can inject work into the storage system.

• IOload: a thread that generates a sequence of IOitems, each of which represents a single I/O
request to the storage system. By default, an open queuing model is used: I/O requests are



4

generated according to the timestamps in the trace file, with no waiting for a previous
request to complete.

• DeviceDriver: sequences requests and sends them on to a specific storage device. (There is
typically one DeviceDriver for each storage device.)

• Disk channel: a path by which requests and data are communicated between the device
driver and the storage device. Paths, or Routes, are composed from a series of Links.

• Disk drive: a model of a real or potential storage device.

The next diagram (Figure 1) shows one more level of complexity: the building blocks used before
are now shown to have internal fine structure, and are themselves composed of lower-level
components. The additional components shown include:

• IOloadGenerator: converts SRTlite trace records into IOitems, to be returned to a calling IOload
thread. In addition, the SRTlite library can optionally provide a set of trace-filtering modules
(these are not shown in the figure).

• Cache: a representation of buffer space that can hold identified ranges of data (used here
both in the host and in the disk drive).

• DeviceMap: essentially a demultiplexor on addressees in IOitems, a DeviceMap allows a single
IOload thread to generate work for multiple device drivers.

• IOscheduler: encapsulates the policy for deciding the order in which requests should be
serviced if more than one of them is outstanding at any moment. It represents both the
queue and its associated dequeing policy.

• Link: a representation of a potential data-movement bottleneck. They are used here to
represent the performance of the SCSI bus and the two interfaces onto it: one at the host end,
one in the disk.

• Disk: models the disk controller and its policies, and acts as the connection point for all the
other components of the disk drive model.

Figure 1 : outline of the building blocks in a simple Pantheon simulation.
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• DMAengine: represents a data pump that moves data between caches (here, between the disk
speed-matching buffer and cache and the hosts’s buffer cache) across a Route.

• DiskMechanism: a thread that models the moving bits of a real disk drive: the rotating
platter(s) and the disk arm with one or more heads on it. Details of the disk’s physical data
layout such as zones, sparing, and sector sizes are handled here.

In addition (not shown in the figure), DiskControllerData and DiskMechanismData objects are
data structures that contain the values used by the Disk and DiskMechanism modules. This
simplifies the support of many disk types by separating the code from the parameter data.

The first step in running a simulation is to initialize the simulator itself. This involves creating all
the simulation objects desired and linking them together. (Some of them need to be explicitly
linked; others automatically connect themselves.) To ensure that everything is set up correctly,
semaphores are used to enable each object-initialization to run to completion, after which all
threads block on an “everything is ready” event. Once everything has been created, this event is
signalled, and execution commences.

The Experiment object is used to control the execution of the simulation. A typical run is divided
into one or more batches—usually one to warm-up the simulation to a steady state, followed by
one or more batches that generate results. A batch typically ends when a timer is triggered, or a
set number of requests have been processed. The simulation run ends when enough batches have
been run (e.g., if the Experiment decides that the results have stabilized), or if the end of one of the

Device driver

Figure 2 : some details of the insides of our simple Pantheon simulation.
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input trace files is reached. This technique allows separate specification of the length of the warm-
up batch and of the subsequent ones, and it also keeps the workload at full steam until the last
request that is to be measured has completed. Together, these eliminate start-up and termination
effects, and the numbers that the simulator produces are thus those for the system’s behavior in
steady-state. (This technique is one of those discussed in [Pawlikowski90].)

As it runs, debugging (trace) data can be emitted by the simulator, under control of the variable
DebugLevel: the higher the level, the more detail is emitted. The default IOload emits a comforting
stream of periods to indicate that forward progress is being made—one for every twenty IOitems
completed.

When the simulation run completes the final results are emitted. If desired, a snapshot of the
results so far can also be emitted at the end of every batch: sometimes the intermediate results are
useful in themselves; sometimes they provide protection against defective simulation
components!

The results come from two sources: individual simulation components keep track of values they
believe may be of interest, and can report them if desired. (For example, a cache buffer keeps track
of how many times it is asked to provide or release space.) The majority of the results usually
come from special statistics-gathering Stats objects that can be attached to measurement points
throughout the simulator. The statistics gathered can be a simple count and mean (e.g., for an I/O
time), or a histogram of values, or as complicated as a correlation between two values such as I/O
time and request-queue length. The level of detail in the statistics can be controlled by a simple
integer variable (StatsLevel). No statistics are gathered unless a Stats object has been attached
to a measurement point—this means that lightweight runs pay almost no penalty, but a great
deal of additional information is available if it’s wanted.

The results themselves are emitted through a Reporter object, which takes care of formatting the
output to correspond to the particular needs of the analysis tools. Our first Reporters were
designed to generate output in a format that could be understood by programs like awk; our
current ones emit Tcl scripts that are amenable to post-processing by the Tongs tools.

Work items in Pantheon are represented by structures called IOitems. These are created by
IOloadGenerators, and injected into the simulator by IOloads. A single I/O request may result in
more than one internal I/O action (e.g., a write to a mirrored disk will generate two low-level disk
writes). In this case, the IOitem is cloned, and its children set to point to the original via an
intermediate data structure called an IOitemVector, which is used to determine when all the child
IOitems have completed. IOitems can be cloned synchronously (they must complete before their
parent can) or asynchronously (the parent can complete before the clone is fully dealt with). The
second is used to handle behavior like write-behind in a disk drive.

The IOitem–IOitemVector nesting can be repeated, forming a tree of linked IOitem blocks. Eventually,
all the child IOitems are completed, and the parent IOitem returns to the IOload that sent it off, where
it is garbage-collected. As each IOitem is completed, an opportunity exists to accumulate statistics
about it—usually through a structure called an IOitemStats, which provides a raft of measurement
points to which Stats objects can be attached. By this means, it is possible to accumulate I/O
completion statistics at many levels throughout the simulation simultaneously.

2.5 The Tcl interface

As mentioned above, Pantheon uses a Tcl interpreter to provide a flexible language for its
configuration. The interface between the Tcl code and the C++ code is provided by a set of (fairly
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exciting) C++ macros, which have the effect of instantiating a set of Tcl functions that provide
interfaces to a newly-created simulation object. Full details are provided in [Golding94]. Most of
the time, an author of a new simulation object just uses cut-and-paste of the Tcl interface code
from an existing one, so the full generality of the interface is rarely an impediment to its
exploitation.

3  Details of simulation components
This section provides a more detailed description of the main simulation-component families. As
mentioned above, it’s always possible to add new ones, but these are common building blocks on
which many other things can be constructed. A similar level of detail is provided for the Raphael,
Lintel, and SRTlite libraries in the next section.

When reading the code, it may be helpful to be aware of two kinds of naming conventions:

• Class names are designed to represent the inheritance hierarchy in that the name of a more
specialized class is usually the name of its base class with something appended to it. This
allows the Tcl interface (section 2.5) to do a rudimentary form of type-checking: it can be set
up to expect objects that are of a given class or its descendants.

• Capitalization hints are often used to distinguish different kinds of C++ names. Thus, if a
name …

– starts with a CapitalLetter: it is probably a global variable or a class name;

– starts with a lower case letter: it is likely to be a local name, and most likely is:
• a local variable if it contains underlines between its words like_this;
• a member function if it uses internal capitals at word boundaries likeThis;

– is all in capitals: it is probably a macro or #define, as in the usual C convention;

– ends with a capital letter: it is most likely a macro argument: likeThiS;

All of the C++ scalar types defined for the simulator have #defines for MAXtypename and
BADtypename, representing the largest allowed value and an invalid one. Convenient types
include:

• byte_t: used for byte-counts and byte lengths, such as for request sizes;

• count_t: used as a general unsigned integer;

• diskaddr_t: expresses device addresses in units of a basic unit (currently 256 bytes)—this
avoids overflow of a 32-bit field for large disks and arrays;

• LintelTime: the type for simulated time (units are seconds)

3.1 I/O processing: generating and routing IOitems

An IOitem describes a single I/O request in the simulator. It specifies the request to be performed
and a number of other properties of it, including:

• the operation to be performed (Read, Write, Seek, etc.);

• a logical unit number (LUN), start address and transfer length (these are encoded in a
structure called a DiskRange, which IOitem inherits from);
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• an identifier and subidentifier, used for debugging purposes (the subidentifier is
incremented when an IOitem is cloned; the id when a completely new IOitem is created);

• a pointer to a parent IOitem and/or IOitemVector, used to wait for cloned IOitems to complete;

• a CacheRange specifying the data source (Write) or sink (Read)—more on this below—and a
Route to transfer the data across;

• a priority to be used for scheduling;

• statistics, including when the IOitem was created, when useful work on it was begun, and
when it finished, as well as a pointer to an IOitemStats object;

• lots of flags.

3.1.1 I/O request generation: IOloads and IOloadGenerators

An IOload is responsible for inserting work into the simulator (which includes creating or
absorbing fake data space for an I/O), issuing requests to one or more DeviceDrivers through a
DeviceMap, implementing the overall simulation queuing model,1 and reporting to a controlling
Experiment how many I/O requests have been handled.

IOitems are created by IOloadGenerators.2 Two kinds of IOloadGenerators are provided:
IOloadGeneratorTrace turns SRTlite trace records into IOitems; IOloadGeneratorSynthetic provides a
rudimentary synthetic workload generation facility.

3.1.2 I/O request direction: DeviceMap

A DeviceMap provides a way to direct or send an IOitem to one or more storage devices. A DeviceMap
has a set of “input” logical devices (LUNs), and a set of “output” physical devices pointed to by an
array of DeviceDrivers. Each of the input and output devices has a size, and their concatenation
forms two address spaces. The simplest use of a DeviceMap is to set the two device lists to have
identical sizes for each of their elements: that is, to form a 1-to-1 map from input LUNs to output
devices. More complicated uses include partitioning a single logical address space across multiple
devices—which means that a single incoming request can generate multiple output requests, if it
happens to span a device boundary.

3.1.3 I/O device management: DeviceDrivers and IOschedulers

A DeviceDriver sends IOitems to its associated device across a given Route (see section 3.2). It is
responsible for coping with devices that can only have a fixed number of outstanding requests,
and it provides a placeholder for a policy that determines the order in which requests are sent to
their device.

The request-sequencing policy is manifested as an object called an IOscheduler. (This scheme of
having separate policy objects that can be changed at simulation-construction time, rather than
simply passing in a set of parameters to an algorithm that tries to cope with all possible
combinations, is one of the more positive results of our use of Tcl). A wide variety of IOscheduler
objects are provided, covering a substantial fraction of the designs reported in the literature. The
most useful are probably:

• IOsched_FCFS: first-come, first-served

1. The current implementation uses open queueing. Some information on the dangers and tribulations of doing
either pure open or closed queueing can be found in [Thekkath94] and [Ganger95].

2. This separation of IOload from IOloadGenerator is a historical hangover from a restriction on nested
inheritance in the ATT thread library that we used to use.
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• IOsched_CLOOK: bidirectional elevator algorithm that does not force a seek to the extreme
ends of the disk (that policy is called CSCAN); this is probably the policy that is used in most
UNIX system disk drivers;

• IOsched_ASATF: one of a family of “2-dimensional” scheduling policies that attempts to
exploit information about the low-level seek and rotation-position timing inside a disk
[Seltzer90b, Jacobson91].

• IOsched_prio: takes a set of IOschedulers that each correspond to a different priority, and does
a strict prioritization between these levels.

In the Tcl code that supports Pantheon, the functions create_IOsched and create_device_driver
remove much of the drudgery associated with constructing all the bits and pieces for these
components, including statistics objects (see section 4.2.1).

3.2 Interconnects: Links, Routes, and DMAengines

An interconnect is something that can deliver a message—a vector of bytes—from a source to a
destination.

The primitive interconnect component is called a Link: an interconnect is made up of a set of them
connected together in a suitable way (see Figure 3 for some examples). A Link has a bandwidth
(possibly infinite), a start-up overhead (possibly zero), and a transfer granularity, representing the
units in which data is moved across it. A Link also represents a point of contention that can be
competed for by threads—the number of simultaneous transfers supported by a Link can be
specified (it defaults to one). LinkMultiDir and LinkFibre support different bandwidths in different
data-transfer directions, and were designed to model things like different service classes across a
FibreChannel fabric. A zero bandwidth, zero-overhead Link can be used simply to glue
components together.

Messages are sent across Routes, which are simply sequences of Links that need to be traversed. To
transfer a message, a Route must first be claimed, which in turn calls claim on all the Links in it.
Claiming the Route costs simulated time equal to the sum of the Link overheads. Data can then be
moved across the Route, at the lowest bandwidth of any of the Links in it, after which the Route
should be released, allowing other transfers to occur across it. Deadlock is avoided by sorting the
Links in a Route and claiming them in that order. (Although this doesn’t perfectly model the effects
of contention inside complex meshes, it’s a reasonable approximation for much I/O work.) The
first and last elements of a Route are often Links representing the DMAengines at hosts or storage
devices.

a. bus: a single simplex
link, shared by multiple
clients.

c. mesh: Links at each node
model the single-node
send/receive rate, and a single
multiplex link approximates the
switching fabric

b. point-to-point: one link
between each pair of
communicating entities

Figure 3 : some sample interconnect topologies constructed from Links.
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DMAengines represent data pumps that move messages across Routes. They process data-
movement requests serially: if you want parallel data movements, you need multiple DMAengines.
Data movement requests are specified by DMArequest structures, which include a source, a
destination, and a Route, as well as some additional flags. Since the sources and destinations are
described in terms of Caches (of which more below), the data movement will block if data is not
yet ready at the source, or if space is not yet available at the destination. By default, if a transfer
blocks in this fashion it will relinquish the Route, but this can be disabled if desired.

3.3 Processors

Processing elements are modelled by Cpu objects, which allow simulated processes to compete for
cycles. The mechanism is quite simple: cycle consumers serialize on the Cpu resource, and then
delay for either a given number of processor cycles or a specific elapsed time.

3.4 Caches

Caches model buffer space in Pantheon. They include support for a simple speed-matching
pipeline or FIFO buffer, caches that can hold just one contiguous thing or multiple separate items,
multi-segment caches, and ones that have arbitrary replacement policies like LRU. The Cache
hierarchy looks like this:

Cache  — virtual class that defines common operations
CacheSpace  — a single segment of memory

CacheSpaceNoOverlap  — restricted so that its contents cannot overlap each other
CacheSpaceReplacement  — adds a CacheRange-discard policy such as LRU

CacheSegmented  — multiple segments, each a CacheSpace
CacheSegmentedNoOverlap  — restricted so that contents may not overlap

CacheSegmentedReplacement  — adds a segment-choice policy such as LRU

A Cache is simply a virtual class that specifies the operations that can be done on all the different
kinds of cache: adding and removing address-ranges, searching for things that overlap a given
range, and so on. A Cache can be a single CacheSpace, which is the simplest object that can store
data, or a set of CacheSpaces with some code to decide which one gets used for what—this is
known as a CacheSegmented. Typically, CacheSegmenteds will have only one contiguous range of
data in each of its segments: they are primarily designed to model the segmented caches that
appear in disk drive controllers.

Associated with a CacheSpace is a Buffer object that represents a pool of reservable memory that
backs the Cache; Buffers are divided up into fixed-sized slots, which are the unit of space
reservation. A Buffer can be infinite in size: if it is not, a request for space will block until there is
enough free memory available for the caller’s request to be granted in toto. (Warning: the code for
deadlock avoidance in cache-space management is one of the hairier pieces of design in the
simulator; you can find it in CacheSpaceReplacement::claimSpace.)

3.4.1 CacheRange

Caches are placeholders for stored items. To create such a stored item, a DiskRange is inserted into
a Cache, and one or more CacheRanges are created. A CacheRange has several portions, each
represented by a DiskRange, with a LUN, start-address, and length:

• range: a portion of the logical address space that the CacheRange backs;

• space: the logical amount of buffer space that it holds; this starts out at zero until the
CacheRange is populated;
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• buffer: the physical amount of memory reserved for it by the underlying Buffer (this can be
larger than the space if the Buffer has large slots);

• valid: the amount of the space that holds valid data (e.g., stuff that has actually been read in
off a disk platter);

• ready: a subset of the valid portion may be ready and available for consumption (e.g., by a
DMAengine).

In addition, there are producer-consumer Semaphores, and flags indicating whether the
CacheRange holds dirty data that has yet to be written out, or if it is pinned in memory and must
not be selected for deletion by one of the replacement policies described below.

There are two basic ways in which CacheRanges are used:

• In speed-matching buffers between a producer and a consumer (e.g., a DMAengine and a
DiskMechanism). Here, the producer extends the range, space, valid, and ready areas while the
consumer shrinks them. Extensions occur at the ends—i.e., the lengths increase—while
shrinkage occurs at the beginning of the ranges, by advancing their start addresses (and
adjusting the remaining lengths accordingly). DMArequests with the consume_source flag set
trigger this behavior.

• In buffer caches, that have long-term state. Here the typical mode of use is that the range and
space lengths are set equal when the CacheRange is created, and the valid and ready lengths
advance in lock-step. The start addresses of these elements never change: instead, the
CacheRange is deleted when it is done with.

There are circumstances where a thread needs to await some set of states across multiple caches—
for example, that one cache contains no dirty data that overlaps a given range, while the other
contains no pinned CacheRanges. Unfortunately, in the time required for the second set of
conditions to become true, the first set might have been invalidated. The CacheLookupAndWait
functions address this by backtracking to reestablish earlier conditions if necessary.

3.4.2 CacheRangeList

Some kinds of cache (notably the ones that have replacement policies) generate many fixed-size
CacheRanges if a large DiskRange is inserted into them. To make life easier, a CacheRangeList is used
to collect these together. It is just what it’s name implies: a list of pointers to CacheRanges. Note
that a CacheRange has an independent existence from a CacheRangeList; indeed, a CacheRange can
be on several CacheRangeLists at the same time. This means that deleting a CacheRangeList has no
effect on the underlying CacheRanges that it points to. By convention, the CacheRanges on a
CacheRangeList are held in increasing address order.

A special kind of CacheRangeList (a CacheRangeListHash) is used inside Cache…NoOverlap and
Cache…Replacement to allow fast lookups: because these caches do not allow their CacheRanges to
overlap one another, the result of a probe for a given <LUN, start-address> pair will always be at
most one CacheRange, so a hash-based search can be used.

3.4.3 Replacement and Flush policies

A CacheSpaceReplacement is a CacheSpace that has a policy for deciding what to do if a new
CacheRange is to be created and populated, but there is no more space to accommodate it. In this
case, a Replacement policy is called to decide which existing CacheRange(s) to evict.

If a Replacement policy (or anything else for that matter) picks a dirty CacheRange to evict, it will
usually first have to be written out to a lower-level device. The Flush policy allows additional
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things to be written out at the same time—for example, the FlushAggreggate policy will write out
any dirty CacheRanges that form a contiguous chunk with the selected CacheRange.

By analogy, a SegmentedReplacement policy is used to decide which segment in a
CacheSegmentedReplacement should be emptied when a new segment is required. (No separate
FlushSegmented policy is needed.)

3.5 Disks: disk mechanisms and controllers

A disk drive is represented by a number of components:

• a Disk thread to model the controller policies;

• a DiskMechanism thread to model the mechanical parts—platters and heads—as well as data
layout; it services requests one at a time, to completion;

• two IOschedulers: one to model the request-ordering policy at the controller if multiple
outstanding requests are allowed, the other to sequence requests between the controller and
the DiskMechanism;

• a Cache to model the speed-matching, prefetching, and write-behind buffer on the disk
controller;

• one or more DMAengines, to model the data pump behind the I/O interface;

• a Link to represent the performance bottleneck of the I/O interface itself;

• associated with the Disk is a DiskControllerData structure that provides the parameters that
describe the controller’s behavior; a similar DiskMechanismData structure exists for the
DiskMechanism; together, these separate the code fairly cleanly from the parameter values,
and make creating Disk and DiskMechanism objects much simpler.

When an IOitem comes into a Disk from a DeviceDriver it is first put on the controller’s IOscheduler
queue (so it can be resequenced if needed), and then an attempt is made to handle it if the disk is
not already handling its maximum number of concurrent requests.1 Handling a request involves
making space for it in the cache, generating a request for the DiskMechanism if needed, and creating
and queueing a data-movement request for a DMAengine. The DiskMechanism may have a
readahead request that it is processing: this has to be waited for, and no new ones generated, if
the mechanism is now needed to do work for the new request.

Much of the complication comes from managing the cache. Reads that hit in the read-ahead buffer
and writes that can fit into the immediate-report write buffer or NVRAM cache can be serviced
without waiting for the mechanism; all others require the disk mechanism to be involved for part
or all of the data.

The following discussion of how I/O requests are handled assumes a single-segment cache and
at most one outstanding active request at the disk for simplicity. For reads:

1. If all of the data requested is already in the cache (e.g., because of a read-ahead), the
mechanism is not disturbed. Any data in the cache that precedes the start of this request is
discarded, to allow maximum space for the read-ahead if it is still continuing or will be
restarted.

2. If no part of the data requested is in the cache, then the cache is emptied, a new entry
inserted into it, and a request is sent to the DiskMechanism to fill it out.

1. There is an additional policy question to do with overlapping requests that complicates this a little: the
collisionQueue structures exist to resolve this question.
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3. If some of the data requested is in the cache, anything preceding its start is discarded, and a
request sent to the DiskMechanism for the remainder.

In all cases, a request is generated for the DMAengine to move data from the cache to the host, and
the read finishes when this transfer has completed. Once the mechanism has finished its work, the
controller may choose to give it one or more readahead requests—either until its cache buffer fills
up, or a new request arrives from the DeviceDriver.

Writes in some disks can be immediately reported if the IOitem flag allowing this is set and it is not
too large (see [Ruemmler93] for more details). Thus:

1. If the write can be immediately reported, space is made for it in the cache, the incoming
DMAengine is started, and a request dispatched to the DiskMechanism to transfer the data to the
disk proper. The request completes when the incoming DMA transfer is done.

2. If the write cannot be buffered, the only difference is that the request is not considered
complete until the DiskMechanism has finished its write to disk.

3.6 DiskSimple and ArraySimple

The DiskSimple family is designed to support fast, crude approximations of real disks: its members
do none of the fine-grained modelling that has been described above, but instead use random-
number generators to estimate disk timing information. Because their running time is much less
than the full disk model they are often helpful during the debugging of a large simulation.

The ArraySimple class models a (very simplistic) RAID 5 disk array. It uses the DiskSimple class to
generate internal timings.

4  Details of support libraries
4.1 Raphael

Raphael provides the coroutines on which Pantheon’s pseudo-multithreading is built. In
addition, it provides a notion of simulated time, as well as a suite of synchronization objects for
various purposes. Many more details are provided in [Golding95b].

A Raphael thread is used to model asynchronous processing in Pantheon. Once instantiated and
initiated, each thread runs until it is blocked by waiting for an event or by delaying, which means
waiting for global simulation time to advance. If no threads are ready to run at the current global
simulated time, this time is advanced to the point where the first delayed thread can run.

Threads can block on Blockables, which come in many flavors. Examples include:

• Barrier: a thread waiting on a Barrier is stuck there until another thread calls signal() on the
Barrier to make it ready.

• Semaphores: a Mutex is a binary semaphore; a plain Semaphore is a counting semaphore that
increments and decrements by one; a SemaphoreMulti allows atomic multi-unit increment and
decrements.

• Locks: these collect together a set of LockObjects and allow construction of things like lock-
matrices (e.g., for single-writer, multi-reader protocols).

• Future: a placeholder for a result from an asynchronous operation. When the result is
computed, any thread waiting for the result is allowed to proceed.
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• Message queue: a FIFO-ordered set of objects: a thread can wait for something to be put onto
a MsgQueue (although most commonly used for IOitems, they can be used for anything since
the class is a template);

• Timer: a kind of Barrier that supports waiting for a timeout.

• BlockableSet: lets a thread wait for the first of a set of Blockables to become ready.

4.2 Lintel

Lintel is the placeholder for a collection of otherwise unrelated components: ones that didn’t
belong in some other library, typically. We’ll survey its contents briefly by function.

4.2.1 Statistics objects

There are three primary statistics families: the Stats, StatsUtil, and the Correlation families. The Stats
family is designed to record values of single variables. A StatsUtil object allows resource
utilizations (e.g., cache space utilizations, queue lengths) to be collected: things like “75% of the
time, the utilization was zero”. A Correlation object records the relationship between pairs of
values, and is able to report their covariance and correlation coefficients.

Stats  — collects mean, count, and standard deviations.
StatsHistogram  — also keeps a histogram of the number of times values fit in each of a set of bins

StatsHistogramUniform  — all bins are the same size
StatsHistogramLog  — the width of the bins increases exponentially

StatsHistogramLogAccum  — adds up the values, as well as the counts in each bin

StatsUtil  — basic summary of how long a resource spends at different utilization levels
StatsUtilHistogram  — also keeps a histogram of times at each level

Correlation  — keeps basic correlation information for two values
CorrelationDensity  — also keeps a 2D histogram of counts of values in an array of bins

In use, Stats objects are attached to measurement points: C++ pointers to a Stats object of the
appropriate class. By convention, these are initialized to NULL until the associated Stats object is
created and assigned. This means that testing whether statistics should be gathered is a simple,
quick test:

if (sample_measurement_point != NULL)
sample_measurement_point->add(value);

The IOitemStats object is simply a collection of these measurement-point hooks, suitable for
recording all the interesting things about a collection of IOitems, such as execution times for reads,
writes and all requests combined.

The Tcl code uses the value of the variable StatsLevel to determine how many Stats objects to
construct, and what level of detail they should record. By default, summary statistics are
accumulated in most places, and full histograms at the IOload and device level. Increasing the
StatsLevel will cause more Stats objects to be created, and/or cause more histograms to be
recorded.

In addition, every Stats object is put onto a Tcl list called the StatsList: at the end of each batch, the
objects on this list are polled and asked to report their values. They may also be asked to reset
themselves (zero their counters, etc)—for example, this is usually done at the end of the first, or
warm-up, batch that gets the system into steady state.
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4.2.2 Reporters

Stats and other simulation objects accumulate state information during the course of a simulation
run; Reporters enable them to emit it. By analogy with the StatsLevel variable, there’s a PrintLevel and
a PrintList: the former determines how often things are printed (just once at the end of each run, or
after every batch); the latter collects all the things that can be asked to report themselves.

Any object that wishes to emit results must be of type Reportable, which means that it supports the
report function. This takes as argument a Reporter, through which results are emitted, one value at
a time, the whole being bracketed by a begin/end call pair. The job of the Reporter is to format the
output; the default one emits the values as Tcl expressions containing lists of name-value pairs.

4.2.3 Random number generators

Lintel provides a range of random-number generators, all derived from drand48(3C). The base
class for the random-number generators is a distribution, which supports a draw() operation to
provide a new value. The different subclasses provide different kinds of distributions: Crand
always returns the same value (a constant); Urand returns uniformly-distributed numbers over its
range; Erand returns ones drawn from an exponential distribution with the given mean; and Nrand
provides a normal distribution with a given mean and standard deviation.

The simulator initializes all its random number generators from a single seed generator (a random
number generator that emits values used as seeds). This mechanism means that all the random
number generators don’t start out with the same seed value, so (for example) not all the synthetic
workload generators attempt to write to exactly the same block on their first request. By default,
the seed generator is itself initialized with a seed of zero, so that runs are repeatable. For truly
random behavior between runs, the seed generator can optionally be initialized with a seed
derived from the low-order bits of the time-of-day clock.

4.2.4 Storage management

Since Pantheon spends much of its time allocating and deallocating small objects, Lintel provides
some software that makes this all go much faster, by pre-allocating pools of objects of the
appropriate sizes, and reusing returned objects rather than allocating new ones wherever
possible. These are encapsulated in the files {Bucket, BucketT, CheckMalloc, StorageManagement}.[HC],
and enabled by the conditional compilation flag STORAGE_MANAGEMENT.

Many of the Pantheon simulation objects use the convention of an isAssigned flag that indicates
“this object is in use” to catch the common error of deleting an object prematurely.

4.2.5 Tcl to C++ interface

The interface between Tcl and C++ is straightforward in principle, but complicated in its details.
Each time a new simulator object class is written, it is given a Tcl interface function with the same
name as the object class. Calling this interface function from Tcl instantiates a new C++ object of
the given class, gives it a Tcl name, and instantiates a set of Tcl “dot functions” that invoke C++
operations on it. Most of the interface is encapsulated by macros.

The result is that C++ objects can be constructed from Tcl quite simply. For example:

set new_link [Link “sample” -b 20e6 -o 2e-6];

creates a new Link with bandwidth 20MB/s and overhead 2µs, and gives it the shorthand name
sample. Its actual name will be something like “:Link:2:sample:”, and this string will also be the result
of the Link Tcl function. Various functions with names of the form “$new_link.something” are created
at the same time so that it is easy to invoke certain of the Link’s member functions. For example,
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the following Tcl code creates a new Stats object and attaches it to the Link’s claimTime measurement
point:

$new_link.claimTime [Stats “sample_claimTime”];

More details of this interface are provided in [Golding94].

In support of all this, the class Nameable allows objects to be given string names, and to record and
print them when useful, and the class NameValueDatabase provides a structure used to map
between Tcl string names and the C++ object addresses needed to make the interface work. There
are several Tcl-related header files:

• TclExecution.H: makes a few of the Tcl interpreter functions visible to C++ code.

• TclInterfaceFunctions.H: provides the macros used for writing Tcl interface functions.

• TclInterfaceTypes.H: provides Tcl-to-C++ and back again conversion functions for all the basic
types supported and used in Pantheon.

• TclInterfaceVariables.H: supports the interchange of values between C++ and Tcl variables:
several things (e.g., StatsLevel) are both Tcl variables and C++ globals; this code keeps them
in step, exporting values across the boundary as needed.

4.2.6 Error handling

Experience has taught us that liberal use of invariant assertions and a convenient set of error-
reporting functions are a great boon to debugging a complicated simulation. This set of functions
makes all that easier.

• Assert.H: provides the Assert() function to test invariants, and invoke appropriate error
handling code if not needed. Unlike the traditional C assert() function, an Assert call has a
level: assertions at a particular level are only checked if the value of the global AssertLevel is
at least that large. This means that very thorough, expensive invariant checking code can be
written and left in place, and need cost little at runtime unless it is enabled.

This package also includes an Abort function that lets functions be registered to be called when
something goes wrong, to allow application-specific debugging routines to be invoked
before a core dump is taken.

• ErrorHandling.H: used to send warning messages to stdout.

• ErrorHandlingMemory.H: exits gracefully if new runs out of space.

• Log.H: some simple code to generate logging files. (Most of the simulator uses the LOG_EVENT

and LOG_IOITEM series of macros defined in Pantheon.H and IOitem.H respectively.)

4.2.7 Queues, lists and other data structures

Lintel also provides a collection of modules to support various useful data structures. (Well, we
think so, anyway.)

• Bitmap: records 0/1 values for a range of addresses in a compact form: think of it as a dense
array of flags.

• HashTable: implements a simple hash table with collisions resolved by chaining.

• HeapSort: a heapsort class that uses templates.

• IntSeq: permutation and other simple integer sequence functions.

• List, ListT: doubly-linked lists of things. The ListT variant uses templates instead of void *.
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• PQueue, Queue, QueueT: various types of queues.

• TimeStamp: a time value that records seconds and microseconds as separate words (this
structure is used in the SRTlite traces).

4.2.8 And a few other bits and pieces

• LintelMisc.H: type definitions and #defines for simple types and values used throughout Lintel
and Pantheon.

• LintelUtilities.H: miscellaneous utility functions such as templated gcd and lcd.

4.3 Workloads

Over the years, we have collected a number of I/O traces at the disk driver and SCSI bus levels.
Although some of them are available only to people inside HP because of confidentiality reasons,
the ones described in [Ruemmler93] are available to pretty much anybody under a non-disclosure
agreement, both to allow them to explore interesting I/O system design issues, and to make it
possible to replicate our own published work. Since the set of traces is constantly changing, it
won’t be detailed here.

We have chosen to convert all the various input trace formats we received into a common format,
known as SRT (the meaning of the acronym is lost in the mists of time). The longer traces are
broken up into 1-day units; they can be concatenated together, or treated as semi-independent
files. For example, we sometimes synthesize a heavier load by replaying different weeks of traces
for the same system in parallel.

4.3.1 SRTlite filters and their composition

The original SRT library required a couple of Bison parsers to understand the header information
encoded in the traces, and was used to construct a simulator that corresponded to the description
found there. Since we now use a different way of building simulators, we’ve also rewritten the
trace-access library, which is now called SRTlite.

Consistent with our philosophy of composing bigger systems out of smaller components, the
SRTlite library is itself composed of a number of different elements that can be composed together
for various purposes to form a graph of components that feed one or more traces into the
simulator code proper. Some examples of the possibilities include:

• merging multiple streams together into one;

• subsetting an input stream, e.g., by request size or type;

• modifying elements of the requests in a stream, such as their start addresses;

• speeding up (or slowing down) the rate at which requests appear to arrive, e.g., to partially
model the effects of a faster processor or heaver load.

These functions are described in greater detail in a separate document [Ganger95].

In addition to the real traces we have available, SRTlite can read in an ASCII stream that specifies
much the same things, and convert it into a stream of IOrequest objects. There’s also a module that
can synthesize a set of requests using a set of arrival-rate and other distributions, although this
code is highly experimental in nature and there remains much room for improvement before we
can adequately emulate a real-world stream [Ganger95a].
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5  Running the simulator
This section describes how the Pantheon simulator is typically used, and how the Tcl files that
drive it are structured. It also briefly discusses the interface to the DQS batch system, and the
Oculus display interface.

5.1 Pantheon

Pantheon itself supports just a few command-line switches:

Usage:
Pantheon [-h] [-Z debug_level] [-P print_level] [-B block_level] \
[-X val,var,expr] [-f file] [-e expression] ...

Where:
-h issue this message
-Z debug_level set debugging verbosity [DebugLevel]
-P print_level set printout  verbosity [PrintLevel]
-B block_level set level of blocking debugging operations [BlockLevel]
-X val,var,expr delay evaluation of expr until var reaches val
-f file file of Tcl commands to obey
-e expression Tcl expression to obey

Instead, most of the configuration work is done by the –e and –f flags. The first of these is typically
used to set (or override) run-specific Tcl variables; the second is then used to read in the Tcl files
controlling the simulation construction.

The typical sequence of files that is read in is as follows:

• init.tcl: pre-loads any necessary libraries (currently only used by Oculus);

• traces.tcl: determines which trace files to read— it contains functions that map various
shorthand specifications (e.g., 1day, 1week) into the appropriate trace files for a particular
host; it is also associated with a set of files called hostname.tcl that describe the configuration
of the host systems from which the traces were taken;1

• backend.tcl: there’s one file for each major experimental setup (e.g., host.tcl builds a simulator
that emulates the original configuration of the traced host); a common idiom here is an
xxxDefaults.tcl file that sets default values for various parameters for an xxx system under test,
unless they have already been defined by a –e expression argument;2

• experiment.tcl: constructs the Experiment, SRTlite filter graph, and the associated IOloads and
IOloadGenerators;

• simulate.tcl: runs the simulation proper, executing a batch of work, emitting results, and then
continuing on if appropriate.

5.2 runPantheon

A front-end script, runPantheon, provides the most usual way to invoke Pantheon. It has a
multitude (somewhere beyond a wealth?) of options, which are gradually being extended as we
add new features to the simulator. To find out the current set, invoke:

runPantheon ‘-?’

This will provoke something like this:

1. This function really ought to be moved into the per-host description files, but we haven’t had a chance to do
so yet.

2. Unfortunately, other examples of this genre (e.g., Array.tcl, IceCube.tcl) are not in the set that we can export
outside HP.
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Usage: runPantheon [-d|D] [-Q] [-q queue] [-C|c]  [-V lvl] [-K time] \
[-P printlevel] [-Z debuglevel] [-z IOitemId,debuglevel] \
[-X value,variable,expression] [-B blockinglevel] \
-h host -b backend -t tracename [-E experiment] [-s simulate] \
[-T “select”] [-p [-]n,n...] [-I <input command>]\
[-f tracefile] [-F tracefamily] [-S simulator] [-o out-dir]\
[-e “tclvar value”] [-l “tclvar value”] [-0 file] ... [-4 file] \
[-m “merge specification file”] [-M “merge building file”] \
[-nobatch]

The following are the minimum that’s needed to run a simulation:

-h host host system (hplajw, snake, cello, ATT, netware-*)
-b backend back-end system (host, IceCube)
-t tracename duration/name of trace (1day, 1week, shortweek, all)

The following flags are passed through to Pantheon itself:

-P level set print level
-Z level set debug level
-z Id,level set debug level starting at IOitem Id
-X val,var,expr obey Tcl “expr” when delay-variable “var” gets to “val”
-B level set blocking debug level

-e “tclvar value” set Tcl variable before running Tcl scripts
-l “tclvar value” lappend value onto Tcl variable before Tcl scripts

The following options control which trace inputs are used:

-f tracefile full name of trace .srt file
-F tracefamily name of tracefamily (default is “1992-complete-disk”)
-T “filter” filter records from the trace
-p [-]n,n… select or eliminate disk n from the trace

-m file file that specifies mergegroups
-M file file that remaps and filters devices
-I “command” a command whose output to pipe into Pantheon

The following are concerned with foreground/background job submission, and whether the
simulator is run, or debugging information emitted instead:

-d emit generated Pantheon arguments to stdout
-D emit generated command to stdout
-Q build a dqs job and submit it (-D overrides submit)
-q queue queue to submit to (no-op if no -Q)
-C keep any generated core file (default for non-DQS)
-c delete any generated core file (default for DQS)
-K time kill the Pantheon run after “time” seconds
-V level make runPantheon debug itself
-O level invokes userinterface Oculus with OculusLevel

-o out-dir prefix for output directory name (default = “output”)
-nobatch do not generate intermediate batch files

-S simulator default is Pantheon, ““ means no simulator
-E experiment name of experiment to run (default is “experiment”)
-s simulate name of simulation-control file (default is “simulate”)

-0 file … -4 file Normal sequence of tcl control files is host, back-end, experiment, simulate
these flags insert auxiliary Tcl files in positions shown:
file0 host.tcl file1 back-end.tcl file2 experiment.tcl file3 simulate.tcl file4

Warning: runPantheon does not conform to the UNIX getopt conventions: instead, all flags and their
values must be passed in as separate arguments (i.e. –V4 is not allowed: you must write –V 4)



20

5.3 The node graph

The topology of the simulation is described is via a declarative structure called the node graph. This
captures the relationship of hosts and the devices they are connected to, as well as the routes by
which this is done. This graph is used to determine what simulation objects will be constructed.
Changes in what is built are accomplished by modifying the node graph before the construction
step. For example, to model the HP AutoRAID, we removed all the physical disks from the node
graph and replaced them with a single AutoRAID device. More information on the how to do this
is available in a separate document [Abram95].

5.4 DQS support

As mentioned above, DQS support is included in runPantheon. The requirements are fairly
straightforward: header and trailer scripts are added to the set of commands generated to execute
Pantheon, and the result spooled off to DQS’s job-submission program.

The rest of the support is provided in the Adze tools, which are used to bring back results files
from where they end up—typically in the local file systems of the compute processors. Once the
results have been retrieved, they can be analyzed with Adze or Tongs.

Adapting runPantheon and Adze to use another kind of batch submission facility should be
straightforward.

5.5 Oculus

Oculus allows the state of the simulator internals to be monitored while the simulator is running.
It does this by providing a special kind of Reporter function, and triggering a call of report() much
more often than at the end of every batch. The output from these is sent across a pipe to the Oculus
program proper, which is a Tcl script that can create windows for each of the statistics objects
being described by the reports, including things like moving strip-charts of the values being
emitted.

Thanks to the way it is constructed, Oculus imposes absolutely no overheads on the simulator
when it is not in use. To enable it, supply the –O flag to runPantheon.

The Oculus program is supplied on an as-is basis: thanks to some internal incompatibilities in the
versions of Tcl, Tk, and various other Tcl libraries that it uses, it has temporarily stopped working.
Sorry.

6  Conclusions
This paper has provided a birds-eye view of the contents and workings of the Pantheon simulator
and some of its support tools. We’ve had fun building them, and even more fun using them; we
hope you’ll get as much out of pantheon as we have.

Disclaimers
Pantheon is offered to other research groups on an “as-is” basis. We regret that we are unable to
provide any support for it. However, we would like to receive notices of bugs that you find and
fix, so that we can propagate these to our own version as well as others who may be using the tool,
and we encourage you to make any useful modules that you construct for Pantheon available to
us for the same reason.
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Regrettably, commercial considerations preclude us from giving away everything that we’ve
develope for Pantheon to research teams outside HP. In particular, our disk array models and the
ones for the HP AutoRAID fall into this category. Sorry.

We solicit your inputs and suggestions as to how we could make the Pantheon suite a more
valuable tool—although we can’t promise to make any changes, we will listen to any input you
provide.
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