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Abstract

The data migration problem is the problem of computing an

eÆcient plan for moving data stored on devices in a network

from one con�guration to another. Load balancing or chang-

ing usage patterns could necessitate such a rearrangement

of data. In this paper, we consider the case where the ob-

jects are �xed-size and the network is complete. The direct

migration problem is closely related to edge-coloring. How-

ever, because there are space constraints on the devices, the

problem is more complex. Our main results are polynomial

time algorithms for �nding a near-optimal migration plan

in the presence of space constraints when a certain number

of additional nodes is available as temporary storage, and a

3/2-approximation for the case where data must be migrated

directly to its destination.

1 Introduction.

The performance of large storage systems (such as disk

farms) depends critically on having an assignment of

data to storage devices that balances the load across

devices or that optimizes a more complex cost func-

tion. Unfortunately, the optimal data layout is likely to

change over time, for example, when either the work-

loads (access patterns or client service requirements)

change, when new devices are added to the system, or

when existing devices go down. Consequently, it is com-

mon in such systems to periodically compute a new op-

timal (or at least very good) assignment of data to de-

vices based on newly predicted workloads and storage

device speci�cations (such as speed and storage capac-

ity) [1, 2, 4, 9]. Once the new assignment is computed,

the data must be migrated from its old con�guration

to its new con�guration. This migration must be done

as quickly as possible, since during the time the migra-

tion is being performed, the storage system is running

suboptimally. In this paper, we consider the problem
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of �nding a plan for performing this migration as eÆ-

ciently as possible.

The input to the migration problem is an initial and

�nal con�guration of data objects on devices, and a de-

scription of the storage system (the storage capacity of

each device, the underlying network connecting the de-

vices, etc.) Our goal is to �nd a migration plan that

uses the existing network connections between storage

devices to move the data from the initial con�guration

to the �nal con�guration in the minimum amount of

time. For obvious reasons, we require that all inter-

mediate con�gurations in the plan be valid: they must

obey the capacity constraints of the storage devices as

well as usability requirements of the online system. (The

migration process can be stopped at any time and the

online system should still be able to run and maintain

full functionality.)

The time it takes to perform a migration is a

function of the sizes of the objects being transferred,

the network link speeds and the degree of parallelism in

the plan. A crucial constraint on the legal parallelism in

any plan is that each storage device can be involved in

the transfer (either sending or receiving, but not both)

of only one object at a time.

Most variants one can imagine on this problem are

NP-complete. The migration problem for networks of

arbitrary topology is NP-complete even if all objects

are the same size and each device has only one object

that must be moved o� of it. The problem is also

NP-complete when there are just two storage devices

connected by a link, if the objects are of arbitrary sizes.1

In this paper, we focus on the following challenging

(also NP-complete) special case of the problem. We

assume that the objects are all the same size. (This

assumption is quite reasonable in practice if we allow

ourselves to subdivide the existing variable sized objects

into unit sized pieces, since the time it takes to send

the subdivided object is about the same as the time

it takes to send the entire object.) We also assume

that the network topology is fully connected, that is,

there is a direct bidirectional link between each pair

of devices. Finally, we assume that there is at least

one free space on each storage device in both the initial

1This observation was made by Dushyanth Narayanan.



and �nal con�gurations of the data. (Again, this is a

very reasonable assumption in practice, since free space

somewhere is required in order to move any objects, and

having only one free space in the entire network would

limit the solution to being sequential.)

We are thus led to describe the input to our problem

as a directed multigraph G = (V;E) without self-loops
that we call the demand graph. Each vertex in the

demand graph corresponds to a storage device, and

each directed edge (u; v) 2 E represents an object

that must be moved from storage device u (in the

initial con�guration) to storage device v (in the �nal

con�guration).

Since we are considering �xed-size objects, our

migration plan can be divided into stages where each

stage consists of a number of compatible sends, i.e.,

each stage is a matching. Thus, we can observe that the

special case of our problem when there are no capacity

constraints on the storage devices and sends must be

direct is precisely the multigraph edge coloring problem

(the directionality of the edges becomes irrelevant).

This problem is of course NP-complete, but there are

very good approximation algorithms for it, as we shall

review in Section 2.

The storage migration application introduces two

very interesting twists on the traditional edge coloring

problem. In the �rst of these variants, we consider

the question of whether indirect plans can help us to

reduce the time it takes to perform a migration. In

an indirect plan, an object might temporarily be sent

to a storage device other than its �nal destination.

It is easy to see that potentially this can signi�cantly

reduce the number of stages in the migration plan. As a

�rst step towards attacking the problem of constructing

near-optimal indirect plans, we introduce the concept

of a bypass node. A bypass node is an extra storage

device that can be used to store objects temporarily

in an indirect plan. (In practice, some of the storage

devices in the system will either not be involved or will

be only minimally involved in the migration of objects

and these devices can be used as bypass nodes.) A

natural question to then ask is: what is the tradeo�

between the number of bypass nodes available and the

time it takes to perform the migration? In particular,

how many bypass nodes are needed in order to perform

the migration in �(G) steps, where �(G) (or � whereG
is understood) is the maximum total degree of any node

in the demand graph G. (� is a trivial lower bound on

the number of steps needed, no matter how many bypass

nodes are available.)

The �rst result of the paper (Section 2.2) is a very

simple algorithm that uses bypass nodes to reduce the

time it takes to do a migration when there are no

capacity constraints on the devices. We show how

to eÆciently �nd a migration plan for any directed

multigraph G that completes in at most 2d�=2e stages
using at most n=3 bypass nodes, where n is the number

of vertices in G. It is also easy to construct graphs for

which n=3 bypass nodes are needed in order to complete

the migration in � steps.

When capacity constraints are introduced (and we

consider here the limiting case where there is the

minimum possible free space at each vertex, including

bypass nodes, such that there is at least one free space

in both the initial and �nal con�gurations), we obtain

our second, more complex, variant on the edge coloring

problem. We can de�ne this problem more abstractly

as the edge coloring with space constraints problem:

The input to the problem is a directed multigraph

G, where there are initially F (v) free spaces on vertex

v. (By the free space assumption, F (v) = max(din(v)�
dout(v); 0) + 1, where din(v) (resp. dout(v)) is the in-

degree (resp. out-degree) of vertex v.) The problem is

to assign a positive integer (a color) to each edge so that

the maximum integer assigned to any edge is minimized

(i.e., the number of colors used is minimized) subject to

the constraints that

� no two edges incident on the same vertex have the

same color, and

� for each i and each vertex v, c
(i)

in (v) � c
(i)
out(v) �

F (v), where c
(i)

in (v) (resp. c
(i)
out(v)) is the number of

in-edges (resp. out-edges) incident to v with color

at most i.

The second condition, which we refer to as the space

constraint condition, captures the requirement that at

all times the space consumed by data items moved onto

a storage device minus the space consumed by data

items moved o� of that storage device can not exceed

the initial free space on that device.

Obviously, not all edge-colorings of a multigraph

(with edge directionality ignored) will satisfy the condi-

tions of an edge-coloring with space constraints. How-

ever, it remains unclear how much harder this problem

is than standard edge coloring.

The main results of our paper are the following:

� an algorithm for edge coloring with space con-

straints that uses at most n=3 bypass nodes and

at most 4 d�=4e colors (presented in Sections 3.1

and 3.3);

� an algorithm for edge coloring with space con-

straints that uses no bypass nodes and at most

6 d�=4e colors (presented in Sections 3.2 and 3.3).



Interestingly, these are essentially the same as the worst

case bounds for multigraph edge coloring without space

constraints.

2 Migration without memory constraints.

As discussed in the introduction, the direct migration

problem in the absence of capacity constraints is pre-

cisely equivalent to the problem of edge-coloring a multi-

graph using the minimum number of colors. The chro-

matic index of a graph, �0, is the number of colors in

the optimal edge-coloring. �, the maximum degree of

any vertex in the graph, is a trivial lower bound on �0.

Edge-coloring is of course NP-complete [6]. The clas-

sic result of Vizing [8] shows that there is a polynomial

time (�+1)-approximation algorithm for simple graphs.

For multigraphs, the best known result is a polynomial

time algorithm that uses at most 9�0=8 + 3=4 colors

[3, 5]. (This approximation algorithm actually colors

the graph optimally if �0 � 9�=8+3=4.) It is also well-
known that �0 is bounded from above by 3�=2, and this

is tight [7].

2.1 Bypass Nodes. As stated above, an optimal

direct migration takes at least �0 parallel steps. If

our solution is not required to send objects directly

from source to destination it is possible that there is

a migration plan that takes less than �0 stages. In

general, our goal will be to use a small number of bypass

nodes, extra storage devices in the network available for

temporarily storing objects, to perform the migration in

� stages.

Definition 2.1. A directed edge (v; w) in a demand

graph is bypassed if it is replaced by two edges, one from

v to a bypass node, and one from that bypass node to w.

An extremely important constraint that bypassing

an edge imposes is that the object must be sent to the

bypass node before it can be sent from the bypass node.

In this sense, edges to and from bypass nodes are special.

The following example, shows how a bypass node

might be used. In the graph, G, on the left, each edge is

duplicated k times and clearly �0 = 3k. However, using
only one bypass node, we can perform the migration in

� = 2k stages as shown on the right. (The bypass node

is shown as Æ.)
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More generally, by replicating the graph G n=3
times, we see that there exist graphs which require n=3

bypass nodes in order to complete a migration in �

steps.

2.2 Indirect Migration without memory con-

straints. We warm up with a simple algorithm for

indirect migration without memory constraints that re-

quires at most 2d�=2e stages and uses at most n=3 by-

pass nodes on any multigraph G. Although this result is
essentially subsumed by the analogous result with mem-

ory constraints, the simple ideas of this algorithm are

important building blocks as we move on to the more

complicated scenarios.

Algorithm 2.1. Bypass Algorithm without memory

constraints

1. Add dummy self-loops and edges to G to make it

regular and even degree (2d�=2e). (This is trivial

{ for completeness it is described in Appendix A.)

2. Compute a 2-factor decomposition of G, viewed as

undirected. (This is standard { for completeness it

is described in Appendix B.)

3. Transfer the objects associated with each 2-factor

in 2 steps using at most n=3 bypass nodes. This is

done by bypassing one edge in each odd cycle, thus

making all cycles even. Send every other edge in

each cycle (including the edge to the bypass node

if there is one) in the �rst stage and the remaining

edges in the second.

This algorithm uses a total of 2 d�=2e stages { two

for each 2-factor of the graph. The bypass nodes are in

use only after every other stage and can be completely

reused. Thus, no more that n=3 bypass nodes are used

total, at most one for every odd cycle.

Notice that we can perform the migration in

3 d�=2e stages without bypass nodes, if we use three

stages for each 2-factor instead of two (a well-known folk

result, see [7]). However, the best multigraph edge col-

oring approximation algorithms achieve better bounds.

3 Migration with memory constraints.

We now turn to the problem of migration (or edge

coloring) with space constraints. For this problem,

we will show how to compute a 6d�=4e stage direct

migration plan and a 4d�=4e stage indirect migration

with n=3 bypass nodes. As mentioned in Section 2, these

bounds essentially match the worst case lower bounds

for the problem without space constraints.

Our strategy for obtaining these results is to reduce

the problem of �nding an eÆcient migration plan with

space constraints in a general multigraph to the prob-

lem of �nding an eÆcient migration plan with space



constraints for 4-regular multigraphs. We �rst present

eÆcient algorithms for �nding migration plans for reg-

ular multigraphs of degree four. Speci�cally, we show

how to �nd a 4-stage indirect migration plan using at

most n=3 bypass nodes and a 6-stage direct migration

plan. We will then give the reduction.

3.1 Indirect Migration of 4-Regular multi-

graphs with memory constraints.

Algorithm 3.1 presents our construction of an indi-

rect migration plan for 4-regular multigraphs with space

constraints. We begin with some intuition for the algo-

rtihms.

Algorithm 3.1. The bypass algorithm for 4-regular

multigraphs

1. Split each hard vertex into two representative ver-

tices with one having two in-edges and the other

having two out-edges. This breaks the graph into

connected components (when the edges are viewed

as undirected). (Figure 1(a) shows an example

graph, and Figure 1(b) shows the result of split-

ting hard vertices, shown as ?.)

2. Construct an Euler tour for each component (ig-

noring the directionalities of the edges) (Figure 1(c)

shows the resulting Euler tours.)

3. Alternately A=B label the edges along the Euler

tour of each of the even components.

4. While there exist a pair of odd components that

share a vertex (each component contains one of the

split hard vertices), label the two out-edges of the

split vertex A, label the two in-edges of the split

vertex B, and alternately A=B label the remaining

portions of the two Euler tours. (Figure 1(d) shows

an example.)

5. Repeatedly select an unlabeled odd component and

perform the following step:

Within that component, bypass exactly one edge,

say (u; v), where the edge is chosen using Proce-

dure 3.1. Label A the edge from u to the new by-

pass node and B the edge from the bypass node to

v. Alternately A=B label the remaining edges in

the tour.

6. The resulting A and B subgraphs have maximum

degree 2. (The only vertices in either graph of

degree 1 are bypass nodes.) Bypass an edge in

each odd cycle that occurs in either the A or B
graph, converting all cycles to even-length cycles.

Alternately color the edges in each A cycle 1 and
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Figure 1: Illustration of �rst few steps of the algorithm.

2, and alternately color the edges in the B cycle 3

and 4.

The diÆculty in constructing an eÆcient migration

plan arises from dealing with the vertices with exactly

two in-edges and two out-edges. We call such vertices

hard vertices, since we are required to send at least one

of the out-edges from such a vertex before we send both

in-edges. We refer to all other vertices as easy vertices

since they have at least as much free space initially as

they have in-edges, and hence their edges can be sent in

any order.2

We formalize in the following proposition the high-

level construction that we use to ensure that space

constraints are never violated.

Proposition 3.1. Let G be a 4-regular multigraph.

Suppose that the edges of G are A=B labeled such that

each hard vertex has two of its incident edges labeled A,
and two of its incident edges labeled B, with at least one

out-edge labeled A. Then if all edges labeled A are sent,

in any order, before any edge labeled B, there will never

be a space constraint violation.

2Recall that our free space assumption is that each vertex has

one free space at the start and �nish of the migration.



Thus, our goal is reduced to �nding an A=B labeling

that meets the conditions of Proposition 3.1, and that

can be performed in as few stages as possible.

Interestingly, if there are no odd vertices (shown in

the �gures as �), vertices such that the parity of their

in-degree (and out-degree) is odd, then the problem is

easy: We split each vertex into two with the property

that each new vertex has exactly two edges of the same

orientation. This new graph need not be connected. We

construct an Euler-tour of each component (ignoring

the directionality of the edges) and alternately label

edges along these tours A and B. No con
icts arise in

the A=B labeling because the tours have even length

{ each vertex has either only in-edges or only out-

edges so the tour passes through an even number of

vertices. The A and B induced subgraphs are a 2-factor

decomposition of the original graph with the property

that exactly one out-edge is labeled A. We can thus use

our standard method for performing migration with or

without bypass nodes given a 2-factor decomposition.

With bypass nodes, this method sends the A-edges in
stages one and two and the B-edges in stages three and

four.

When there are both odd vertices and hard vertices,

the problem becomes more diÆcult. In particular, it is

not hard to show that there exist 4-regular multigraphs

in which no A=B labeling of the graph ensures that

every vertex has two incident A edges and two incident

B edges, with at least one A-labeled out-edge from each

hard vertex. To solve the problem, we will need to

bypass some of the edges in the graph.

Our algorithm starts out very much like the algo-

rithm just described for graphs with no odd nodes, but

now we split only the hard vertices into two representa-

tive vertices with one having two in-edges and the other

having two out-edges.

Each resulting component (disregarding edge direc-

tionality) still has an Euler tour of course, but not all

components have even length. We call those with even

length tours even components and those with odd length

tours odd components. Those that do have even length

can be alternately A=B labeled. We could then bypass

one edge in each odd component, and A=B label the

resulting even-length tour. Note that the choice of by-

passed edge determines the A=B labeling of the tour

{ as discussed in Section 2.1 the incoming edge to the

bypass node must be labeled A and the outgoing edge

must be labeled B.
Unfortunately, this will not give us a good bound on

bypass nodes, since there can be 2n=5 odd components

(Figure 1). We get around this problem by observing

that the A=B labeling so constructed satis�es a more

restrictive property than that needed to obey space

constraints { it guarantees that every hard vertex has

both an in-edge and an out-edge labeled A. This

excludes perfectly legal labelings that have hard vertices

with two out-edges labeled A. Indeed, it is not possible
in general to beat the 2n=5 bound on bypass nodes if

we disallow both out-edges from being labeled A.
Therefore, the algorithm will sometimes have to

label both out-edges from a hard vertex A. In our

algorithm, this happens whenever we �nd a pair of odd

components that share representatives of the same hard

vertex. We can merge the two odd components into

a single even component which can be A=B labeled

such that both out-edges of the shared hard vertex

are labeled A. When no remaining unlabeled odd

components can be merged in this fashion, we are

guaranteed that there are at most n=3 odd components

remaining.

Unfortunately, our work is not done, since in addi-

tion to the bypass nodes introduced for each remaining

odd component (which have one incident edge labeled

A and one incident edge labeled B), there may be odd

cycles in the A and B induced graphs. We will also

need to bypass one edge in each of these odd cycles. If

we are not careful about which edge we bypass in the

odd component, we will end up with too many bypass

nodes used to break odd A or B cycles. The heart of

our algorithm and analysis is judiciously choosing which

edge to bypass in each odd component. With carefully

accounting for these bypass nodes in the analysis, we

show that the total number of bypass nodes used is at

most n=3.

3.1.1 Terminology. The result of steps 1-4 is a

decomposition of the graph into a collection of unlabeled

odd components that are connected via A or B labeled

paths (which correspond to edges that were in even

components, or odd components that were merged and

labeled in Step 4)

Within each unlabeled odd component, we have two

types of vertices: internal vertices, which have all their

edges inside the odd component, and external vertices,

which have only two edges, either both directed towards

the vertex or both directed away from the vertex. Since

adjacent odd components have been labeled (Step 4),

the other two edges incident to each external vertex are

both already labeled (one A and one B).
Figure 2 shows a example of what the resulting

graph might look like. There are four unlabeled com-

ponents (C1; : : : ; C4). Classify the A and B paths em-

anating from each external vertex as either an external

loop if its two endpoints (external vertices) are in the

same unlabeled component, or as an external path if its

two endpoints are in di�erent unlabeled components.
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External A loopExternal B path

Figure 2: An example of what the graph might look like

after Step 4.

Procedure 3.1. A=B coloring odd components There

are two cases:

1. There is only one external vertex.

Within this case, there are two subcases:

� If there is a pair of internal vertices that are

each not adjacent to the external vertex that

have an edge between them, bypass that edge.

� If not, there are only two possible graphs,

shown below. We omit the justi�cation of this

fact. (The external vertex is on the left and

the directionality of the edges is not shown.)

Bypass the dashed edge.

2. There are 3 or more external vertices.

Let v be the external vertex incident to the largest

number of external loops. Bypass one of its incident

internal edges. If the resulting A=B labeling of this

component's Euler tour creates an A or B cycle

with v (containing an external loop and an internal

path connecting the endpoints of the external loop),

switch which one of v's internal edges is bypassed.

Analysis.We now turn to the analysis of the algorithm.

By construction, edges are A=B labeled so that the

conditions of Proposition 3.1 are met, and hence we

have:

Lemma 3.1. Algorithm 3.1 computes a migration plan

that respects space constraints.

Our main theorem is the following:

Theorem 3.1. The bypass algorithm for edge coloring

4-regular multigraphs with space constraints uses four

colors and at most n=3 bypass nodes, where n is the

number of nodes in the graph.

Proof. By construction, the algorithm described uses 4

colors. We have only to show that it uses at most n=3
bypass nodes. We do this by \crediting" each bypass

node used in the A stages with a distinct set of three

vertices in the graph, and crediting each bypass node

used in the B stages with a distinct set of three vertices

in the graph.

A bypass node that is created in order to break an

odd A cycle (or B cycle) will be credited with three

vertices in that cycle. Notice that bypass nodes used to

break A cycles can be reused to break B cycles. The

tricky part of the argument will be to show that each

bypass node that is created when an odd component is

A=B labeled can also be credited with 3 vertices.

The accounting scheme we use is based on the

following observations about the structure of what

happens when step 5 is performed. Prior to performing

this step, we have exactly one A external path or loop

and exactly one B external path or loop connected to

each external node. When we pick an edge inside the

component to bypass, and A=B label the component,

every internal vertex (which is of degree 4) gets two

of its incident edges labeled A and two of its incident

edges labeled B, and every external vertex gets one of

its incident internal edges labeled A and one labeled B.
Thus the internal A path (or B path) emanating from

an external node either terminates at a bypass node,

in which case we call it an end path, or it terminates

at another external node, in which case we call it an

inscribed path. Thus, looking at the A subgraph (or

similarly the B subgraph) of an odd component with

2k + 1 external vertices, we obtain precisely k disjoint

inscribed A paths and one A end path. (Note that the

odd component must have an odd number of external

vertices, since each internal vertex appears twice in the

Euler tour of the component and each external vertex

appears once and the length of the tour is odd.)

For the case where an odd component has exactly

one external vertex, we can simply verify that breaking



the proposed edge results in three vertices not in odd

cycles that can be credited to the A and B end-path.

In both graphs, bypassing any edge except the ones

incident to the external vertex guarantees that there will

be no odd cycle created inside the component. Since

only the end paths leave the components all vertices

inside the component are not in odd cycles and can be

credited to the bypass node.

If the odd component has more than one external

vertex, then it must have at least three. We will credit

the bypass node with the external node on the end path

terminating at the bypass node (which in general will

be di�erent for A and B), and with two other external

vertices in the component. The diÆculty is that if we

are not careful about which edge in the component we

bypass, the two other external vertices we select can

have an inscribed A path between them and an external

A loop, and thus might end up in a short odd A cycle. If

this happens, we will violate our condition of crediting

each bypass node with distinct vertices in the graph,

since the bypass node created to break this short A cycle

will also be credited with these vertices. Therefore, we

choose an edge to bypass so that the other two external

vertices we credit to the bypass node are not in a short

cycle.

We �nd that it is suÆcient to guarantee that for

each odd component processed in Step 5, in the resulting

A graph (resp. in the resulting B graph) one of the

following situations holds:

1. There are at least two external paths labeled A
(resp. B).

If there are at least two external paths labeled A,
one of them is not connected to the A end path.

Thus, there is an inscribed A path that connects the

external path to some other external path or loop.

In this case, we credit the bypass node (in stage

A) with the two external vertices on this inscribed

path and with the external vertex on the A end

path connected to it.

2. The component is labeled so that there is an A
(resp. B) external loop that does not form a cycle

with an inscribed A (resp. B) path.

In this case, the A external loop is connected to

some other A external loop or path via an inscribed

A path. We can again credit the bypass node with

the external vertices on this inscribed path and

with the external vertex on the end path connected

to it.

If the edge selected to bypass in Step 5 results in

one of these two situations holding, we say that a good

edge was bypassed.

Notice that in both of these situations, the two

external vertices credited to the bypass node may end

up in an odd A (or B) cycle. We claim, however, that

if this happens, it is an odd cycle created by two or

more external A loops or paths and hence it has length

at least �ve. Since we have only credited two of the

external vertices on the cycle to the bypass node created

in Step 5, we still have three vertices in the odd cycle

that can be credited to the bypass node that will be used

to break the cycle. In fact, the argument is slightly more

complicated than this { we omit the details.

Finally, we must show that the procedure used to

select an edge to bypass in each odd component with at

least three external vertices results in bypassing a good

edge.

Let v be the odd component's external vertex with

the largest number of incident external loops as chosen

by the algorithm. If there is no external A (likewise B)
loop at v then the odd component has at least two A
paths and, as such, any edge is good for A. To see why

this is the case note that if v has no external loops then

no external vertices have loops so clearly there are at

least two external paths of both labels. If v has one

external loop of label B then the other endpoint of the

loop has a B loop (the same one). Since v has the largest
number of loops, this other vertex can not have an A
loop. Thus, both this vertex and v have A paths.

Now we argue that our choice of edge to bypass

guarantees that any external loop emanating from v
does not form a cycle with an inscribed path. Suppose

v's internal edges are both in-edges3 from vertices u1
and u2 and we bypass the edge (u1; v) using bypass node
b. The edges (u1; b) and (u2; v) are thus both labeled A
and the edge (b; v) is labeled B (See Figure 3(b)). As

such the B loop, if there is one, does not create a cycle.

Assume that there is an A loop. If not, we are done. If

labeling the rest of the odd component according the the

Euler tour does not cause an incribed path to be created

between the externalA loop's endpoints then we are also

done and (u1; v) is good for A. Otherwise, this incribed
path must go through the edge (u2; v). The algorithm

swaps which edge is bypassed so that edges (u2; b) and
(u1; v) are both labeled A and the edge (b; v) is labeled
B (See Figure 3(c)). The bypassed edge is still good for

B. We now argue that is also good for A. The rest of

the labeling remains the same as the edges incident on

u1 and u2 have not changed labels. Since the rest of

the labeling does not change, there is still an internal

A path from the one endpoint of the external A loop to

u2. This path continues from u2 to b and terminates.

Thus, the edge (u2; v) is good for A.

3The case where they are both out-edges is similar.
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Figure 3: Choosing which edge to bypass.

3.2 4-regular migration without bypass nodes.

We next show how to compute a six stage migration plan

of a 4-regular multigraph without using bypass nodes.

The �rst 4 steps of the algorithm are the same as in

Algorithm 3.1. Procedure 3.2 replaces Steps 5 and 6 of

Algorithm 3.1, the only steps that used bypass nodes,

with a construction that uses two extra colors instead.

In this procedure, the label A will be for stages 1, 2,

and 3, while the label B will be for stages 4, 5, and 6.

After completing Step 4 of the previous algorithm,

the graph contains a number of unlabeled disjoint

odd components connected by A=B labeled paths and

loops (Figure 2). We make the following additional

observations about the graph:

� Each odd component contains at least one odd

vertex. (Otherwise, the tour would be of even

length.)

� Since odd unlabeled components are disjoint, and

odd vertices are always internal, every path be-

tween two odd vertices in di�erent odd unlabeled

components has length at least three.

Procedure 3.2. Final steps in 4-regular migration

without bypass nodes

50. A=B label each remaining odd component by start-

ing with an odd vertex, v, and the label B and

following the Euler tour of the component labeling

edges alternately A and B. Note: v will have three

B labeled edges incident and one A labeled edge.

60. Color the A and B induced subgraphs:

(a) Color the A induced subgraph (note: the A
induced subgraph is a set of paths and cycles):

i. Break all odd length cycles by coloring

one edge in them 3.

ii. Color all remaining paths and even cycles

with the colors 1 and 2.

(b) Color the B induced subgraph (note: the B
induced subgraph has vertices of degree two

and degree three only):

i. Color one edge 6 on each degree three

vertex. We are left with cycles and paths.

ii. Color one edge 6 in each odd length cycle

to convert the cycle into a path. Choose

an edge that is not incident on one of the

degree three vertices (which is possible

because of the second observation above).

iii. The remaining graph is just paths and

even cycles. Color them with colors 4 and

5.

The algorithm can be easily seen to meet the con-

ditions of Proposition 3.1. Straightforward arguments

(omitted in this extended abstract) thus give us the fol-

lowing theorem:

Theorem 3.2. The above algorithm computes a proper

six coloring of the graph that respects the space con-

straints of the hard vertices.

3.3 Reduction to 4-regular graphs. We next

show how to reduce the general migration problem with

space constraints to the problem of migration with space

constraints on 4-regular multigraphs. Ideally, we might

like to split the graph into 2-factors, such that sending

the edges within a 2-factor in any order satis�es our

space constraints, and so that after each 2-factor is sent,

there is still one free space at each vertex. This is not

always possible. What we are able to do is to split

the graph into 4-factors such that after each 4-factor is

sent, there is once again a free space at each vertex.

To partition the edges of the graph in this way, we

need, roughly speaking, to match up in-edges of a vertex



with corresponding out-edges. Algorithm 3.2 gives the

precise details.

The key lemma is the following:

Lemma 3.2. A migration that repeatedly picks one edge

incident to vin and one incident to vout to send in either

order will never violate the space constraints of v.

Proof. We consider two cases, depending on which of

vin or vout has incident edges only of one type (at least

one of them must).

Case: vout has only incident out-edges.

Then since one of the edges chosen is an out-edge

there will be at least one out-edge sent for every in-

edge so the free space after the two edges are sent

is at least what it was before.

Case: vin has only incident in-edges.

If ` = din � dout, then we know by the free space

assumption that there are at least `+1 free spaces

initially. We allocate this free space as follows:

� The number of times that two in-edges are

chosen is exactly `=2 we allocate two free

spaces to each of these.

� The remaining times we choose an in-edge and

an out-edge. All of these cases will share the

one remaining free-space. Since both an in-

edge and an out-edge are sent, we will regain

the free space again after the two edges are

sent.

Note that since we always have exactly one edge

incident to vin and exactly one incident to vout if the

edge happens to be a dummy self loop then it is the

only edge chosen at this step of the migration. Since

nothing happens in this case, the available free space

remains unchanged. There is also at most one dummy

edge and it is incident to vin or vout, whichever has less
of its type of edge. Our argument above focused on the

edges incident on vin or vout, whichever has more of its

type of edge, so the arguments still hold when a dummy

edge is present.

Algorithm 3.2. The reduction to 4-regular graphs

1. Make G regular with degree a multiple of four (4k)
(using the procedure in Appendix A).

2. Split each vertex v into vin and vout assigning v's
edges to either vin or vout to get G0:

(a) Assign dummy self loops, (v; v), to both vin
and vout as (vout; vin).

(b) Assign the remaining in-edges to vin and the

remaining out-edges to vout (excluding the

dummy edge).

(c) Assign the dummy edge, if there is one, to the

representative of v with the least number of

adjacent edges.

(d) Make the degrees of vin and vout equal by

moving real edges from one to the other until

they have equal degree.

G0 has 2n vertices and is 2k-regular.

3. Compute a 2-factoring of G0 (viewed as undi-

rected). This gives k 2-factors.

4. In each 2-factor merge vertex representatives back

together. That is, vin and vout become v again. The
result is k 4-factors of our original graph G. The

problem is thus reduced to computing a migration

with space constraints on these 4-factors of G.

We thus obtain:

Theorem 3.3. Algorithm 3.2 reduces the problem of

performing a migration with space constraints on an ar-

bitrary graph to that of performing a series of migrations

with space constraints on 4-regular multigraphs.

Combining this theorem with Theorems 3.1 and 3.2

gives us the following corollaries:

Corollary 3.1. There is an algorithm that takes as

input an arbitrary directed multigraph of maximum

degree � and �nds a 4 d�=4e stage migration plan using

at most n=3 bypass nodes.

Corollary 3.2. There is an algorithm that takes as

input an arbitrary directed multigraph of maximum

degree � and �nds a 6 d�=4e stage migration plan

without bypass nodes.

4 Open Problems.

We have presented some �rst results on two intriguing

and well-motivated twists on the traditional edge color-

ing problem. Numerous open problems remain includ-

ing the following:

What is the relationship between the chromatic in-

dex of a graph and its \chromatic index with space con-

straints"? Are there better approximation algorithms

for this latter problem than those presented here? Is

there a \Vizing-like" theorem for edge coloring simple

graphs with space constraints?

What is the tradeo� between the number of bypass

nodes available and the number of stages (or colors)

required? What if it is possible to bypass to vertices in

the graph (as opposed to extra nodes)?
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A Obtaining a Regular Graph.

Some of our algorithms require regular graphs of degree

either a multiple of 2 or 4. Let �0 be this desired degree,

either 2 d�=2e or 4 d�=4e. We construct such directed

regular multigraphs as follows.

Algorithm A.1. Making a directed multigraph �0-

regular

1. While there exists a vertex with degree less than

�0 � 1, add a self loop to that vertex.

2. While there exist two vertices of degree �0�1, add

an arbitrarily directed edge between them.

Every vertex in the resulting graph has degree �0.

B 2-factor decomposition.

It is well known that a 2k-regular multigraph can be

factored into k 2-factors. For completeness, we review

an algorithm for doing this. This algorithm takes an

undirected multigraph G with degree � = 2k and

returns k 2-factors of G. We will be performing this

operation on directed multigraphs. In this case, the

directions of the edges are ignored during the factoring

algorithm.

Algorithm B.1. 2-factoring a multigraph

1. Construct an Euler-tour of G.

2. Orient the edges according to the direction of the

tour. That is, if the tour enters v on edge e1 and

leaves on edge e2, then e1 is an in-edge to v and e2
is an out-edge. Thus we have din = dout = k.

3. Set up a bipartite matching problem, BG, with a

representative of each vertex in the graph on both

sides. Add in all directed edges going from left to

right. Note that each edge is represented it the

matching problem exactly once.

4. Find a matching (which is guaranteed to exist by

Hall's Theorem). The matched edges induce a 2-

factor of the original graph. Remove these edges

from BG and repeat this step until there are no

edges left.


