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Abstract

Modern disk drives read-ahead data and reorder incoming
requests in a workload-dependent fashion. This improves
their performance, but makes simple analytical models of
them inadequate for performance prediction, capacity plan-
ning, workload balancing, and so on. To address this prob-
lem we have developed a new analytic model for disk drives
that do readahead and request reordering. We did so by de-
veloping performance models of the disk drive components
(queues, caches, and the disk mechanism) and a workload
transformation technique for composing them. Our model
includes the e�ects of workload-speci�c parameters such as
request size and spatial locality. The result is capable of
predicting the behavior of a variety of real-world devices to
within 17% across a variety of workloads and disk drives.

1 Motivation

There are many reasons for wanting analytical performance
models of disk drives and other storage devices. In our case,
we were working to develop an automatic attribute-managed
storage system that takes in descriptions of the storage work-
load and automatically designs and con�gures a storage sys-
tem that meets those needs [11]. One component of the so-
lution was an assignment engine that explored the design
space { which workload element to assign to which storage
device. Each trial in this search required a performance pre-
diction, which meant that we needed a performance model
that was both fast (a few milliseconds to execute), accurate
(within 30% of the real device), and capable of representing
a variety of storage devices.

Although much e�ort was expended in producing analyt-
ical models of disk drives in the 1960s and 1970s, most recent
modeling work has been concentrated on disk arrays, so ad-
vances in disk drives such as on-board controllers that cache
requests and do readahead and write-behind have largely
been ignored. As [25] showed, accurate modeling of these
behaviors is important: ignoring caching e�ects can result
in performance prediction errors of over 100%.

Additionally, since we needed to match workloads to de-
vices to produce good assignments, the performance model
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we needed had to take account of a range of workload char-
acteristics. And �nally, our timing requirements meant that
analytical models were our only choice, since the detailed
simulation models that can provide high accuracy (e.g., [25,
18, 10]) run for too long to be included in the inner loop of
an optimization engine.

This paper presents a signi�cant step in a solution to this
problem: it presents an analytic model for realistic modern
disk drives that support request reordering and read-ahead.
We believe that the model can readily be generalized to
handle disks with a variety of caching and queueing policies,
as well as disk arrays, as well as a wider range of workloads
than it already does.

The remainder of this paper is organized as follows. The
next section describes our overall approach; Section 3 lists
the attributes that we use to characterize our workloads and
the devices we model. Section 4 is the meat of the paper {
in it, we present the models themselves in su�cient detail
to allows others to reproduce them. Since a model is only as
good as its predictive abilities, Section 5 presents a summary
of the extensive validation work we performed. Section 6
discusses related work and Section 7 o�ers some conclusions
and discusses potential future work.

2 Approach

We model complex storage devices by modeling the indi-
vidual physical components of the device, such as queues,
caches, and disk mechanisms, and then composing the com-
ponents to give a composite device model for the entire stor-
age device. For example, a queueing, caching disk drive is
modeled as three components: a disk mechanism, a cache,
and a request queue (Figure 1).

Our approach is based on four important ideas:

� A storage device model can be created by composing
models for the individual components of a storage de-
vice: queues, controllers, caches, and disk mechanisms.

� The performance characteristics of a storage workload
can be captured by a small set of behaviors that de-
scribe the workload such as the mean request size and
the request arrival process.

� The service time predictions for a component can be
determined from the predictions of the next lower level
plus the characterization of the workload presented to
the component. That is, the component models can
be largely developed in isolation, although their pre-
dictions depend on each other's output. Our service
time derivations are presented in Sections 4.1{4.3.

� Each component may modify the workload it presents
to the next lower-level component. We formalize these
as workload transformations, which are presented in
Sections 4.4 and 4.5.
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Figure 1: A composite model of a queueing, caching disk drive
built from three separate component models. The input to the
composite model is the workload w; this is transformed by the
queue to workload w0, and by the cache to workload w00, which is
what the disk mechanismmodel sees. In turn, the disk mechanism
model emits performance predictions d, which are transformed by
the cache and queue component models to d00, which is the output
of the entire composite device model. (Note: although we write
about \higher" and \lower" level components, it is convenient to
draw the models from left to right, with \higher" being leftmost,
nearest to the host system.)

In summary, each component model takes as input a
workload characterization, transforms this to a workload to
impose on lower-level components. In turn, the performance
predictions of a component typically depend on the service
time predictions of the component(s) on which it relies. For
example, a request queue may increase spatial locality by
selecting requests in an order that minimizes physical arm
movement (a workload transformation), but increase the
perceived service time because of queueing delays (a be-
havior transformation); a cache may reduce request rates
seen by a lower-level component by absorbing some of the
requests on cache hits, and o�er reduced service times on
those same hits.

Our method is an instance of the general category of
decomposition models with weakly coupled components.
Although the component characteristics are often speci�ed
through mean values, the method has no connection with
mean value analysis (MVA), which is an approximate
method for analysis of closed queueing networks [20].

3 Device and workload speci�cations

A performance prediction for a storage device is a function
of both the storage device itself and the workload presented
to it. This section discusses how we characterize each of
these. Although variances for many of the items discussed
here are sometimes important in practice, we concentrate
our presentation in this paper solely on mean values.

3.1 Device speci�cation

In some ways, the characterization of the disk drive is sim-
pler than that of the workload, since the number of di�er-
ent underlying processes is known in advance and bounded.
([25, 28] provide a more detailed introduction to disk drives
and these processes.) Our model handles the subset shown
in Figure 1 and summarized here. Table 1 lists the pa-
rameters that we use to characterize the components of our
composite disk model.

� Incoming requests are placed into a request queue,
and serviced in an order that depends on the queue's
scheduling algorithm. One commonly implemented
algorithm is Shortest Positioning Time First (SPTF,
also known as SATF [27, 16]), which services requests
in an order that minimizes the total positioning time.

� The disk cache acts both as a speed-matching bu�er
and as a means for caching data recently read from or
written to the disk.

Table 1: The characteristics of the components of our composite
disk model.
component property units

disk seek time as a function of distance seconds
mechanism revolution time seconds

track switch time seconds
cylinder switch time seconds
number of bytes, number of
cylinders, sectors per track, |
and tracks per cylinder

cache cache segment size bytes
read-ahead policy (on, o�, ...) |
amount to read-ahead bytes
write-to-disk policy (write-through, |
write-back, ...)
cache-to-host transfer rate bytes/

second

queue scheduling algorithm (FCFS, SCAN, |
CSCAN, ...)

Since the disk cache is typically small compared to the
�le bu�er cache of the host that is using it, \random"
and \reuse" cache hits are relatively rare, but requests
for contiguous extensions of prior reads can be com-
mon. As a result, a useful optimization is for the disk
drive to perform readahead: once the disk mechanism
completes a read request, it may continue to read data
into the cache, in anticipation of a future request for
this data. Readahead is usually only done when the
disk mechanism has no other useful work to perform.

Disk caches are made from volatile memory, so they are
(by default) write-through to preserve data on power
failure. Although this choice can usually be overridden
by the disk's client, doing so brings the risk of data loss
and the need for more complicated error recovery after
a power failure. In some write-intensive environments
these write-behind algorithms can provide similar ben-
e�ts to readahead, and are considered worth the risks.
Our model doesn't yet support them, although we be-
lieve that an approach similar to the one we use to
model readahead would be quite successful.

� The disk mechanism comprises the rotating platters
and the arms that move the disk heads to the cor-
rect tracks. The time to position the disk head has
two parts: a seek time while the heads are moved to
the correct track; and a rotational latency while the
platter carrying the data rotates into position under
the heads. Once in place, data is transferred to or
from the platter at a rate determined by the rotation
speed of the platter and its recording density, with oc-
casional interruptions to switch to a new platter or a
new cylinder if the transfer crosses a track or cylinder
boundary.

3.2 Workload speci�cation

Workload characterization is a hard research problem: ar-
bitrarily complex patterns can occur in workloads, and cap-
turing the important aspects of these with only a few pa-
rameters is di�cult. We started with a small subset that
allowed us to represent several of the behaviors that we have
observed in real-life I/O traces. In particular, we chose to
emphasize support for spatial locality in the form of runs of
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Figure 2: A workload with a bursty arrival process. Each ver-
tical bar represents a request arrival. Some requests arrive while
their predecessors are being serviced, and so queues build up.
This can happen even when the device is able to service the long
term mean arrival rate.

requests to contiguous data, and temporal locality on the
form of bursty arrival patterns.

Table 2 lists the attributes we used to characterize work-
loads for the performance models described here. The fol-
lowing paragraphs describe these in greater detail.

Arrival-process attributes The �rst four workload
attributes capture information about the temporal access
pattern of requests as they arrive at the storage device in
addition to the long-term average rate. We model three
di�erent arrival processes:

� constant: the interarrival time between requests is
�xed. The workload request process can be closed
(blocking), which means that only one request can be
in the device at a time, or open (non-blocking), which
allows multiple simultaneously outstanding requests {
most of which will probably be blocked internally at
a queue inside the storage device drive.

� Poisson: the interarrival times are independent and
exponentially distributed; Poisson arrival processes are
always open.

� bursty: some of the requests arrive su�ciently close to-
gether that their interarrival time is less than the ser-
vice time, so a backlog of outstanding requests builds
up. Bursty arrival processes are always open.

Burst attributes Prior work [24] has shown that bursts are
important to model in I/O systems. We de�ne a burst as a
group of consecutive requests in the request stream whose
interarrival times are less than the burst request interarrival
time. For a particular device, the burst request interarrival
time is the mean device service time. Figure 2 shows an
example of a bursty arrival process.

The burst fraction indicates what portion of all the re-
quests occur in such bursts; the requests per burst identi�es
the mean number of requests in a burst. The request rate is
the arrival rate during a burst, averaged over the burst.

Spatial locality attributes The next set of attributes from
Table 2 allow us to capture di�erent kinds of spatial local-
ity on the workload. Although many such characterizations
are possible, we concentrated on the notion of sequentiality,
because of the very important part this plays in predicting
the performance of a disk drive: by eliminating positioning
time, sequential accesses can be very much faster than ran-
dom ones. In addition, readahead can make sequential runs
of read requests particularly fast.

A run is a sequence of consecutive requests that access
sequentially contiguous locations (see Figure 3). Fully se-
quential workloads consist of a single run and are rare in
practice; more common are partially sequential workloads
which have multiple runs, perhaps intermixed with other
requests. The fraction of requests that are part of a run
is the locality fraction. The run stride is the mean distance
between the beginnings of two consecutive runs.

Bytes
1st request 3rd request

2nd request

2nd run1st run

run stride

Figure 3: Two sequential strided runs, each consisting of three
requests.

Bytes

th request th request

bytesx
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Figure 4: A sparse, non-contiguous run of requests, with inter-
request distance x.

A special form of sequential spatial locality occurs in
some database workloads, when the consecutive requests
are not quite contiguous { that is, the runs have \holes"
in them. Since these can also bene�t from readahead, we
represent these as sparse runs. A sparse run is a group of
consecutive requests that each access data within x bytes
of their predecessor (see Figure 4). The largest interesting
value of x is a function of the disk drive's cache segment size
and readahead policy, and is discussed further in Section 4.2.

Now that the device and workload parameters have been
described, we can proceed to see how they are used in the
model proper.

4 The models

This section presents our models. We begin with a discus-
sion of the service time prediction (or behavioral) compo-
nent models. These provide the output from the model in
the form of predictions of the performance seen by a work-
load arriving at the device or one of its components. The
disk mechanism is described in Section 4.1, the cache in 4.2,
and the queue in 4.3. We then present the workload trans-
formations performed by the component models for caches
(Section 4.4) and queues (4.5).

4.1 Disk mechanism service time model

The service time of a request in the disk mechanism
(Mech Service Time) is a function of: (1) the seek time
(ST), which is the amount of time that it takes to move
the disk heads to the desired cylinder; (2) the rotational
latency (RL), which is the time for the platter to rotate to
the desired sector; and (3) the transfer time (TT), which is
the time to transfer the data from the disk mechanism to
the next higher level. Since these are typically independent
variables, we can approximate the expected value of the
disk mechanism service time as

E[Mech Service Time]

� E[ST] +E[RL] +E[TT[request size]]: (1)

The transfer time is the easiest of these: let
Transfer Rate be the transfer rate of data o�/onto the
disk; TT[request size] can then be approximated as
E[request size]=E[Transfer Rate]. (Variations will occur as a
result of track and cylinder switches and di�erent track
sizes in di�erent zones on the disk.) The rest of this section
describes our technique for approximating seek time and
rotational latency.



Table 2: The attributes used to characterize workloads. Unless otherwise noted, all these are mean values averaged across the lifetime
of the workload.

attributes description units

temporal locality measures
request rate rate at which requests arrive at the storage device requests/second

arrival process inter-request timing (constant [open, closed], Poisson, or bursty) |

request per burst size of a burst requests

bursty fraction fraction of requests that occur in a burst 0{1

spatial locality measures
data span the span (range) of data accessed bytes

request size length of a host read or write request bytes

run length length of a run, a contiguous set of requests bytes

run stride distance between the start points of two consecutive runs bytes

locality fraction fraction of requests that occur in a run 0{1

requests per sparse run the size of a sparse run (a run with internal holes) requests

sparse run length length of a sparse run bytes

sparse run fraction the fraction of requests that are in sparse runs 0{1

other measures
read fraction (write fraction) fraction of the requests that are reads (writes) 0{1

Seek time The seek time can be approximated as the fol-
lowing function of dis, the number of cylinders to be traveled:

SeekTime[dis] =

(
0 dis = 0

a+ b
p
dis 0 < dis � e

c+ d � dis dis > e

where a, b, c, d, and e are device-speci�c parameters.
To determine the mean seek time we use the fact that

the expected value of a continuous real random variable is
the integral of 1 minus its cumulative distribution function
[13]:

E[STran] =

Z
1

0

t � dPr[ST < t] =

Z
1

0

Pr[ST � t]dt

where Pr[RV < v] is the probability that RV is less than v,
and E[STran] represents the mean seek time for a workload
whose requests are randomly distributed across the disk.

Let SD be a continuous random variable representing
the integer-valued seek distance between consecutive
requests, measured in cylinders. Assume that the
requests are uniformly distributed across a range of C
cylinders; C = data span=Ave Bytes per Cylinder. Let
Cyl[t] be the inverse function of the seek-curve function:
SeekTime[Cyl[t]] = t. Then,

Pr[ST � t] =

(
1 if 0 < t � a
Pr[SD > Cyl[t]] if a < t � SeekTime[C]
0 if t > SeekTime[C]

E[STran] = a+

Z
SeekTime[C]

a

Pr[SD � Cyl[t]] dt: (2)

A closed form can be determined at this point (and can be
found in [28]). In addition, this closed form can be used to
generate a closed form that takes into account spatial local-
ity (as speci�ed in Section 3.2). For example, if the workload
has spatial locality (de�ned here in terms of runs) and the
�rst request of each run is uniformly spatially distributed
across the disk, the mean seek time can be approximated as

E[STseq] � request size

run length
�E[STran]: (3)

If only a fraction of the requests are part of runs, (3) can be
improved using the locality fraction attribute.

A particular case of interest is that with n requests uni-
formly distributed across a range of cylinders C. This cap-
tures the behavior of some of the avors of request reordering
that queues can perform. Since n+1 random points on the
interval (0; C) create n+2 intervals whose lengths have the
same distribution [12, 28],

Pr[SD � y] =
�
1� y

C

�
n+1

; (4)

which can be combined with (2) and (3) to provide a closed-
form solution for the expected seek time in a workload-
speci�c manner.

Rotational latency If we assume that the requests are ran-
domly distributed on the sectors of the given cylinder using
a uniform distribution, we have

E[RL] � Revolution Time=2: (5)

Combining (2) through (5) as speci�ed in (1) gives us a
way to approximate the disk mechanism service time in a
workload- and device-dependent manner.

4.2 Cache service time model

The service time of a caching device depends both on the
mechanism service time and the cache miss and hit prob-
abilities. The hit rate for simple LRU access processes is
typically zero for disk drives, because hosts caches are much
bigger than disk caches, and the disk cache covers a tiny
fraction of the underlying storage. However, the hit rate for
readahead requests is often quite high, because readahead
often successfully predicts that data immediately following
requested data will also be requested. If the disk drive would
otherwise be idle, it does so at near-zero cost. Modeling the
cache e�ects of readahead is the main content and contribu-
tion of this section.

Let Cache Service Time be a continuous random variable
representing the service time for a caching device. The gen-
eral form is

E[Cache Service Time] � E[request size]

Cache Transfer Rate

+Miss Prob �E[Mech Service Time] (6)



where Cache Transfer Rate is the data transfer rate between
the cache and the host, andMiss Prob is the probability that
a request will be a cache miss. (If readahead is not enabled,
or if request is a write, the miss probability will be 1.) The
rest of this section presents our approximation of the cache
miss probability|the only unknown in (6). We also present
a slightly more re�ned version of (6).

The cache miss probability For most workloads, the �rst
request of a run will be a cache miss. We assume here that
a read-ahead is performed only after a cache miss and (for
simplicity of exposition) that all the requests are reads.

The amount of data read-ahead (Read Ahead Length) is
bounded above by the cache segment size; some disk drives
also stop read-ahead once a track or cylinder boundary is
reached. We de�ne the amount of data read into cache by a
cache miss to be:

data read = request size+ Read Ahead Length: (7)

For a small sequential run (run length � data read), the
number of requests that can be serviced by the data read
in by each cache miss is the same as the number of re-
quests in the run: brun length=request sizec. If the run is
large (i.e., run length > data read), the number of requests
that can be serviced by the data read in by one cache miss
is determined by the amount of data read into the cache:
bdata read=request sizec. This can be written as

requests serviced by one disk access

=
j
min frun length; data readg

request size

k
:

If the workload has sparse-run spatial locality, and the
amount of data read-ahead is bounded only by the cache
segment size, then we can approximate the length of the
sparse run by the cache segment size. The number of re-
quests serviced by one disk access is equal to the number of
requests in one sparse run:

requests serviced by one disk access

� requests per sparse run:

For both regular sequential runs and sparse runs the miss
probability can be approximated as

Miss Prob � 1=requests serviced by one disk access: (8)

However, the cache miss probability also depends on the
request rate. If the disk wins the race to read-ahead the next
request's data before the request arrives, then the request
will hit in the cache. If it loses, a cache miss will occur, and
the request will be stalled until the data it needs is trans-
ferred o� the platter. Since disk caches tend to purge data
from their cache that has already been sent to the requesting
host, this process can continue inde�nitely, with the cache
acting as a speed-matching circular FIFO.

To determine the likelihood of the new request coming
in before the FIFO is �lled and thereby causing a cache
miss, let Mech Service Time be the mechanism service time
for a cache miss. If request rate < Mech Service Time, the
following equation replaces (8):

Miss Prob

� Mech Service Time

interarrival time � requests serviced by one disk access
:

2nd request arrives

Service time for 1st request
read-ahead

Time

Service time for

(a) (b)1st request arrives (c)

Figure 5: Request arrival time line for the �rst two requests of
a sequential run where the cache performs read-ahead.

Partial cache hits We say that the ith request of a run is
a partial hit if the readahead for its data has begun but not
�nished when the request arrives (case (b) in Figure 5). For
example, a partial hit will occur for the second request in a
run if the request interarrival time is larger than the lower
level service time for a singleton request but less than the
time to do this singleton plus a readahead, which is typi-
cally much less than twice the singleton case. Such partial
hits a�ect the cache service time given in (6) by adding
the product Partial Hit Prob � E[Mech Service Time0] where
Mech Service Time0 is the time for the mechanism to ser-
vice the partial hit. If we assume that the arrival times
for the requests that are partial hits are evenly distributed
across the interval (b) in Figure 5, then this is just the time
to transfer request size=2 bytes o� the platter since there
will be no positioning time involved: Mech Service Time0 �
TT[request size=2]. The rest of this section discusses our
approximation for the Partial Hit Prob.

If the mean request interarrival time is shorter than the
mean service time of a readahead request (and thus much
shorter than the service time of a random request), the sec-
ond and subsequent requests will all be partial hits, and
we can approximate Partial Hit Prob � 1. Conversely, if the
mean request interarrival time is much longer than the mean
service time of a random request, the second and subse-
quent requests will usually be hits, and we can approximate
Partial Hit Prob � 0. The tricky case to handle is when
the request interarrival time is similar to the service time
of a random request. If we assume that the time between
requests and the transfer rate are both constant, then the
probability that the ith request in a run is a partial hit can
be formalized as

Pr[(i� 1) � interarrival time � ST+ RL+ TT[i � request size]]:
which can be written as Pr[z � ST+RL] where z = (i� 1) �
interarrival time�TT[i � request size]. Using the de�nition of
probability and the fact that the seek time and rotational
latency are independent, we have

Pr[z � SeekTime+ Rot Lat]

=

Z
z

x=0

Pr[SeekTime � x] dPr[Rot Lat < z � x]: (9)

A closed form can be determined at this point. Graphing the
above probability as a function of z shows that as the request
interarrival time increases, the probability of a partial hit
decreases, as expected.

A similar analysis can be performed for the sparse run
case. It is also possible to relax the assumption of con-
stant interarrival time, and a similar analysis can also be
performed if the arrival process is Poisson. This technique
allows us to approximate the workload-dependent service
time of a disk with a cache that performs readahead.



4.3 Queue service time model

Let Queue Delay be a continuous random variable for the
time that a request is delayed in the queue. The mean ser-
vice time of a request in a queueing, caching device is a
function of the queue delay:

E[Service Time]

= E[Queue Delay] +E[Cache Service Time]: (10)

The rest of this section discusses how to approximate queue
delay for workloads with an open queueing model.

Queue delay|Poisson arrivals The standard M/G/1
queueing model allows us to approximate the mean queue
delay from the request rate of the workload and the mean
and variance of the cache service time [17]:

E[Queue Delay] =
�2(1 + C2

s )

2(1� �)request rate
(11)

where

� = request rate �E[Cache Service Time]

Cs =
StDev[Cache Service Time]

E[Cache Service Time]
:

The variance of Cache Service Time, and
hence StDev[Cache Service Time], can be
computed by methods similar to those used for
E[Cache Service Time]; see [28] for details. In the
absence of other information, we may approximate
StDev[Cache Service Time] = E[Cache Service Time],
which corresponds to an M/M/1 queue model. The storage
system community has generally used the above method
of determining the mean queue delay to analyze the
mean queue delay of a FCFS queue (e.g., [32, 21]). We
have extended this approach to analyze other scheduling
algorithms that are frequently implemented in queues in
the I/O path such as LOOK and Shortest Seek Time First.
We continue to use an M/G/1 queue model approximation
for these cases, but substitute in a cache service time that
is speci�c to the actual scheduling algorithm used by
modifying the run stride spatial locality measure in a
scheduling-algorithm-speci�c way (this is discussed further
in Section 4.5).

Queue delay|bursty arrivals Although there are many
ways to characterize a burst, we use a simple de�nition
that nonetheless captures the essence of the issue: a burst
is the group of consecutive requests that arrive while the
storage device is still servicing a prior member of the
burst (i.e., the queue length is non-zero, or the device is
active). The analysis in [24] of real workloads showed that
signi�cant fractions of I/O requests occur in such bursts.
This is not a Poisson arrival process, so additional work is
needed to model it.

Suppose the �rst request in the burst arrives at
time t0, the ith interarrival time in the burst is Ai,
and the lower-level service time of the ith request in
the burst is Bi. Then the ith request in the burst
arrives at time t0 + A1 + � � � + Ai�1, and it enters
service at time t0 + B1 + � � � + Bi�1. Thus, the

queueing delay is
P

i�1

j=1
(Bj � Aj). The mean value

of the queue delay of the ith request in the burst is
(i � 1)(E[LL Service Time] � E[interarrival time]) where

LL Service Time represents the lower level service time. If
there are n requests in the burst, the mean queue delay
over all the requests is

E[Burst Queue Delay]

=

P
n

i=1
(i� 1) (E[LL Service Time]�E[interarrival time])

n

=
n� 1

2
(E[LL Service Time]�E[interarrival time]): (12)

We call a request stray if it arrives outside of a burst
(i.e., the queue length is zero and the device is idle). If
there are a signi�cant number of strays, the mean queue
delay is reduced since each stray request will experience a
zero queueing delay. Thus, we compute the queue delay as

E[Queue Delay] � bursty fraction � E[Burst Queue Delay]:

4.4 Cache workload transformations

To determine cache service time, it is necessary to
know the service times at the lower level of regular
misses (Mech Service Time) and of readahead misses
(Mech Service Time0). Thus, the component immediately
below a cache sees two types of requests, each with its own
characteristics. The following paragraphs describe how
these characteristics are determined.

Request size The cache passes through read
requests that miss in the cache to the lower level:
request size

r;D
= request size

C
. (The subscript C denotes

a characteristic of requests entering the cache, and D
denotes requests entering the lower-level disk mechanism
component.) Suppose the cache performs read-aheads
by reading chunks of Read Ahead Granule bytes at a
time. On a cache miss that provokes readahead, the
cache will �rst pass through the request (request size

C

bytes), and follow this with readahead requests
(request size

r;D
= Read Ahead Granule) until either the

cache segment is full, another request comes in, or (in some
disks) a track or cylinder boundary is reached.

With a write-through cache, writes are passed through
unchanged: request size

w;D
= request size

C
.

Request rate and arrival process In the general case, both
the read arrival rate and the arrival process will be trans-
formed. However, if the arrival process starts out as Poisson
or constant, it will remain so. We thus restrict our discus-
sion to changes in the arrival rate.

Assume the original request rate is small enough so
that the readahead can complete before the next request
is issued (case (c) in Figure 5). The lower-level device
sees the following behavior: idle, request, read-ahead
request, : : :, read-ahead request, idle, : : : etc. That is,
the transformed arrival process becomes bi-modal: a
subset of the original requests arrive at the disk with
something like the original arrival process, and the
readahead requests arrive with a constant process with
mean request rate 1=TT[Read Ahead Granule] where
TT[y] is the amount of time needed to transfer y bytes
from the lower level into the cache. The rate of original
requests (of size request size

C
) that miss in the cache

is request rate
r;D

= Miss Prob � request rate
C
. The rate

of read-ahead requests (of size Read Ahead Granule)
is request rate

r;D
= 1=TT[Read Ahead Granule].

Thus, a readahead sequence lasts for time



TT[Read Ahead Length � request size
C
] and contains

(Read Ahead Length � request size
C
)=Read Ahead Granule

such requests.
If the cache is a write-through cache, neither the write

request rate nor its arrival process will be transformed. Oth-
erwise, the transformed arrival process will be a function of
the kind of delayed-write policy used: it can be more bursty
if the policy delays until it needs space or meets a thresh-
old [24], or less so if it uses a rate-controlled trickle-out of
dirty blocks. The rate can e�ectively be lower if some of the
blocks are written out when the disk would otherwise have
been idle because these do not a�ect the perceived drive
performance seen by foreground activity.

A delayed write-back policy can also reduce the trans-
formed write rate by absorbing overwrites, which are quite
prevalent in some workloads; we currently do not have a
workload behavior attribute that captures this.

Spatial locality Readahead alters the spatial locality of the
workload seen by the lower-level component: it makes work-
loads more sequential because the readahead looks like a
run of requests of length Read Ahead Granule. As a result,
the transformed run length of a random workload that uni-
formly provokes readahead is run length

D
= data read =

request size+ Read Ahead Length.
A cache performing read-ahead also makes a sparse run

seem like a standard run to the lower-level device, so if the
spatial locality is speci�ed as a sparse run, the transformed
workload will have run length

r;D
= sparse run length.

The modi�cations made by the cache to the run stride
attribute are typically small, so run strideD � run stride.

4.5 Queue workload transformations

Queues can signi�cantly modify the arrival process. Since
there will typically be only one request active in the lower
level components of the device, the transformed workload
is a closed one. That is, the mean interdeparture time for
the queue is the same as the mean interarrival time for the
lower-level device.

Non-FCFS scheduling algorithms can also modify the
run stride spatial locality properties of the workload if their
queue lengths become greater than one. Typically, they do
so by reducing the mean seek (and possibly rotation) dis-
tance traversed by the disk mechanism in order to reduce
the physical positioning times experienced in the lower level
component. For a workload that is randomly distributed
across a range of cylinders C, the transformed run stride is

run strideD =
C � Bytes per Cylinder
E[Queue Size] + 2

:

Since this depends on the length of the queue, we have a
feedback loop. This means the implementation of the model
can require more than one iteration through the model. In
practice we �nd that only one or two iterations are necessary
to reach convergence.

We assume that the queue does not reorder sequential
requests, so queues do not transform run lengths.

5 Validation of the model

One way to evaluate our model would have been to compare
it with other models, but, as we discuss in Section 6, other
models do not support non-random/non-Poisson workloads.
In addition, this comparison would not tell us how well we

were modeling the disks. Ideally, we would have liked to
compare our model's predictions to measured data from a
range of real disk drives under a number of real-life work-
loads. In practice, this is di�cult to do, because reproduc-
ing interesting workloads reliably is hard, and most disk
drives do not contain the internal measurement points that
we needed in order to perform our component-model valida-
tions. So instead we turned to the Pantheon disk simulator
[34], which has disk models that have been calibrated against
real HP97560 disk drives to a demerit �gure of 5.7% [24].

Using Pantheon allowed us to replay workload traces
captured from real-life systems, and to generate synthetic
workloads to test speci�c model behaviors. It also allowed
us to use the measurement points inside the simulator to
determine what was happening between the di�erent com-
ponents of the disk model. Since Pantheon reproduced the
architectural components of real disk drives fairly faithfully,
the result is that we had an independent, convenient testbed
against which to compare our analytic models. This section
reports on the results of that comparison.

We validated our model by comparing its performance
predictions on test workloads against the Pantheon mea-
surements when fed the same workloads: �rst component-
by-component, and then as a whole. All of the equations
presented in this paper (and many more found in [28]) were
validated. In particular, (10) was used to determine the
mean device service time, E[Device Service Time].

We used many workloads in our experiments, beginning
with simple, predictable synthetic workloads with Poisson
arrivals and uniform random access across the disk cylinders,
and progressing up through synthetic models of video-on-
demand applications and the data staging and checkpoint-
ing phases of a parallel scienti�c �le system, up to disk I/O-
level traces of a number of real-life workloads including an
unaudited run of the TPC-C database benchmark [31], an
HP-UX timesharing system, and a number of IBM AS-400
production systems. This set included workloads with con-
stant, Poisson, and bursty arrivals, open and closed queue-
ing models, and a large range of spatial locality measures
and request sizes. More details of the workloads and how
we determined the values of the workload attributes can be
found in [28]. For this paper, we have chosen representative
samples to indicate the range of results that we obtained.

We made one change in our con�guration from that of
Figure 1: instead of modeling the request queue in the
drive, we used the queue in the disk driver component.
This allowed us to take advantage of Pantheon's previously-
calibrated disk models without change, and meant that we
could avoid the issues that arise in practice when the queue
length in the disk drive is arti�cially limited by the host.
([35] discusses many of the variations possible in this design
space.) The main performance e�ects of the di�erent queue
placement have to do with the timing of interconnect trans-
fers and controller overheads; we believe that it would be
straightforward to alter the models to accommodate either
position.

Unless otherwise stated, the models are for an HP97560
disk drive con�gured with a single-segment write-through
cache, and readahead that stopped when the cache segment
became full.

Poisson workload Even though workloads with Poisson ar-
rivals and random uniform access are almost unheard of in
practice, we �rst present our model using such workloads to
allow it to be compared with others. Figure 6 displays the
relative error in the mean device service time as the arrival
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Figure 6: Validation results for a Poisson arrival process. Each
graph shows the relative error of the mean device service time
as a function of the disk utilization across the scheduling algo-
rithm (i.e., the absolute value of the performance prediction er-
ror divided by the measured Pantheon value). FCFS is �rst-come,
�rst-served (i.e., no reordering); LOOK and CLOOK are variants
of a sort-by-cylinder policy; SSTF is shortest-seek time �rst. The
number of requests in a run was varied from 1 to 8; the �gures
here are for values 1 and 4. In all cases the request size was 8KB;
the arrival process was Poisson; the queueing model was open;
the requests were 100% reads. The disk utilization was varied by
altering the mean request rate.

rate and number of requests in a run is varied, for four di�er-
ent request scheduling algorithms. For these workloads, our
largest relative error is 29% (for SSTF queueing at a disk
utilization of 80% and no spatial locality), but the majority
of errors are less than 15%.

Synthetic parallel scienti�c �le system workload We per-
formed experiments with synthetic workloads to validate
that the mean device service time could be determined for
a parallel scienti�c �le system workload. We used syn-
thetic workloads since traces of current scienti�c applica-
tions would not represent the current trend in parallel �le
system research. Our synthetic workloads captured both
data-staging (i.e., moving the entire �le from disk to main
memory in stages) and checkpointing, which occurs when
the application writes a subset of the application data struc-
tures to disk. Data-staging accesses the �le in sequential
runs of length 1 or 2, while checkpointing accesses can be
captured with sequential runs of length 64. Accesses tend
to be blocks that correspond to the �le system block size;
we used 16KB. The arrival process is constant, and the re-
quest rate should keep the disk streaming. Since the work-
loads have a closed arrival process, the choice of scheduling
algorithm is irrelevant, so we used FCFS. Table 3 shows
the results. Similar errors were obtained for other device
and workload con�gurations. For example, we performed

Table 3: Parallel scienti�c �le system workload results. The
number of requests in a run varied from 2 to 64. The request size
was 16KB; the request rate was 120 requests/second; the arrival
process was constant; the queueing model was closed. The queue
scheduling algorithm was FCFS.

Workload E[Device Service Time]
run read measured predicted error
count fraction (ms) (ms) (%)
1 1 31.6 31.7 0.3%
2 1 18.8 19.7 5.1%
64 1 4.5 4.5 0.3%
1 0 28.2 28.3 0.2%
2 0 25.4 25.6 1.0%
64 0 22.5 23.0 2.3%

Table 4: The workload attribute values for an unaudited TPC-C
benchmark. Cst, log, and stk correspond to three di�erent tables
in the TPC-C benchmark data; the trailing number is the disk
number; the traces were taken on a 38-disk con�guration.
attribute stk.11 log.14 stk.17 stk.20 cst.24
request rate 13.32 23.23 13.90 13.80 22.53
e�ective request rate 18.82 31.81 17.28 16.39 29.62
request size 2048 5126 2052 2049 2048
read fraction 0.79 0.02 0.57 0.76 0.83
sparse run length 2.0 30.2 2.1 2.0 2.0
sparse run fraction 0.17 0.94 0.04 0.01 0.01
frac. of cylinders 0.05 0.22 0.02 0.05 0.05

additional experiments with request rates of 100 and 160
requests/second and obtained similar degrees of accuracy.

Transaction processing workload We validated our model
using traces of a TPC-C workload with a FCFS queue
scheduling algorithm. The disk modeled was an HP
C2490A, since this was the kind used in the system on
which the traces were obtained; its cache was con�gured
in the same way as the HP97560 disks used in the other
tests. Table 4 contains the workload attribute values that
we used as input for the model. Some of the traces had
signi�cant periods of idleness; we compute the e�ective
request rate for the model by discarding segments of
the traces where there was no activity for greater than
1 second. Stk.11 has moving \hot spots" (i.e., cylinders
that are heavily accessed); we capture these with the
sparse run attributes. Note that most of the traces access
a small percentage of the disk cylinders. The validation
results are shown in Table 5. Our largest relative error
is 15.7%, with most below 7.5%. This is an encouraging
result for such real-world data.

AS400 database-like workload We validated our model us-
ing traces of a 2-disk IBM AS400 system running a produc-
tion database-like workload supplied to us by Bruce McNutt
of IBM. The workload had very little spatial locality and the
arrival process was bursty.

Table 5: Transaction-processing database workload results.
Workload E[Device Service Time]

trace e�ective disk measured predicted error
utilization (ms) (ms) (%)

stk.11 14.7% 9.1 9.8 7.5%
log.14 22.5% 7.7 8.9 15.7%
stk.17 13.5% 8.8 8.8 0.1%
stk.20 14.1% 9.6 10.0 4.4%
cst.24 25.7% 10.7 11.0 2.5%



Table 6: Summary of error statistics for the mean device service
time of subtraces of IBM-AS-400-1 trace.

Workload E[Device Service Time]
subtrace burst read measured predicted error

size fraction (ms) (ms) (%)
0 48 0.67 388.2 397.2 2.3%
1 53 0.53 403.5 423.2 4.9%
2 71 0.51 542.8 566.3 4.3%
3 91 0.52 712.8 726.5 1.9%
4 46 0.59 367.6 374.4 1.9%
5 42 0.52 332.7 336.4 1.1%
6 37 0.57 281.2 299.4 6.5%
7 50 0.47 398.2 403.7 1.4%
8 77 0.42 573.6 608.9 6.1%
9 77 0.38 584.3 608.4 4.1%

all 59 0.52 394.0 394.2 0.7%

We split the �rst 10000 requests of the trace into 10 sub-
traces of 1000 requests each and determined the workload
behavior for each subtrace; the only behavior attributes that
varied were the number of requests in a burst (which var-
ied from 37 to 91 requests), the read fraction (which varied
from 0.38 to 0.67), and the lengths of the subtraces (which
varied from 53 seconds to 444 seconds), long enough for
steady state behavior to be achieved. As seen in Table 6,
the relative errors are small (with a maximum error of 6.5%)
and of the same magnitude, even though the device service
time varies signi�cantly (from 281.2 to 712.8 milliseconds).
These experiments show not only that we can determine de-
vice service time when the arrival process is bursty, but also
that our model is robust in light of changing read fractions,
request rates, and burst sizes for this workload.

6 Related work

This paper has discussed our modeling methodology in
terms of a queueing, caching disk. The usual approach
to analyzing detailed disk drive performance is to use
simulation (e.g., [14, 27, 36]). Although simulations can
provide detailed, accurate models that accommodate
arbitrary real-life workloads (e.g., measured I/O traces),
it is unsuitable for the many applications that need a
performance estimate quickly.

Most early modeling studies (e.g., [3, 33]) concentrated
on rotational position sensing for mainframe disk drives,
which had no cache at the disk and did no readahead. [5] in-
troduced a workload-speci�c mechanism service time model,
but the mean seek time had to be provided as part of the
workload speci�cation. Most prior work (e.g., [26, 22, 21])
has used uniform random spatial distributions. [8, 19] mod-
eled the probability that no seek was needed; [15] reported
that an exponential distribution of seek times matched mea-
surements well for three test workloads. No general method
of computing the seek time distribution given a workload
was presented in any of these papers.

Trace driven analysis has been used extensively in I/O
cache research, but almost all of the work on analytic cache
modeling has been for processor caches. These have rather
di�erent characteristics than disk caches: the replacement
costs are uniform, operations are on whole cache lines, there
are no inter-line spatial locality e�ects, and they typically
have many more cache lines than a disk does cache seg-
ments. As a result, most emphasize the importance of LRU-
style cache hits, which are extremely rare in disk caches.
For example, the independent reference models of [4, 6] fail
to take spatial locality into account. [7] used queueing to

analyze cache write-back policies for workloads that are re-
stricted to a Poisson arrival process. [29] analyzed write-only
disk caches and derived equations to calculate the cache size
needed to guarantee that all writes would be written with
a zero-cost piggy-back write-back policy. They validated
their model with a simple disk simulator, reporting \slight
uctuations" between the approximations and the simula-
tor values. Although they used skewed workloads as well
as uniform random ones, only equations for the latter are
presented in the paper, the arrival process is restricted to
be Poisson, and no sequential spatial locality e�ects were
discussed.

Queueing theory is the main analytic approach that has
been used for analyzing the e�ects of request queueing. [32]
used an M/G/1 model for the FCFS scheduling algorithm;
[14] extended this by providing a measure of locality of the
requests for the FCFS scheduling algorithm, but did not
show how to determine the locality measure, and it would
be di�cult to extend the model to include caching because
of its direct dependence on the seek distance. [9, 23, 30]
analyzed the SCAN and LOOK algorithms, assuming that
the seek time is proportional to the seek distance and the
workload is Poisson and has random uniform accesses. It
does not seem straightforward to extend these analyses to
use more realistic assumptions of disk behavior. [1] analyzed
the FCFS algorithm for a drum, where the arrival process
has a squared coe�cient of variation close to 2; we have
found in our studies of disk behavior that the squared coef-
�cient of variation varies between 0.06 and 0.16.

Probably the closest models to ours are the disk models
developed for use in disk array models (e.g., [8, 19, 21]).
With a Poisson arrival process, an open queueing model,
and random uniform accesses across the cylinders of the disk,
these models are as good as ours. If any of these assumptions
are untrue { i.e., if the workload is closed, or the arrival
process is constant or bursty, or the workload is sequential
{ we can approximate the service times with smaller errors
since we take these workload behaviors into account. For
example, the models of [8, 19, 21] would approximate the
device service time of a workload with 100% reads, a request
size of 8KB, a run length of 4 requests, and a Poisson arrival
process as 26.2ms for a HP 97560 disk (the running time of
a random workload) whereas we would approximate it as
8.1ms. The measured service time is 8.3ms.

We know of no other analytic models with the same sup-
port for modern disk drives and ability to represent reada-
head and queueing e�ects across a range of workloads.

7 Conclusions

Our model supports all combinations of the following, with
mean errors less than 17% for disk utilization less than 60%
for the workloads tested.

� queueing, caching disk with readahead

� FCFS, LOOK, CLOOK, SSTF scheduling algorithms

� constant, Poisson, and bursty arrival processes

� contiguous, strided, and sparse types of spatial locality

This was shown by validating the model with real-world
transaction processing workloads and synthetic video-on-
demand workloads and parallel �le system workloads for
scienti�c applications. As a side-e�ect, we developed an-
alytical models of caches and queues that can be used to



model other parts of the I/O path. Our cache model in-
cludes predictions for the e�ects of readahead, and allowed
us to approximate the behavior of workloads with sequen-
tial locality in the form of runs of contiguous reads. Given
the performance e�ects of sequential disk accesses, this is
probably the most important contribution of this work.

Future work Our model could usefully be extended in a
number of directions. We are currently focusing on more
general workload models, such as workloads with bursty
arrival rates, on modeling disk array components, and on
relaxing the requirement that only one workload is being
serviced by a device at a time. We also are modeling the
performance impacts of multiple disks on one SCSI bus [2].
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