
“Tcl cures 98.3% of all known
simulation configuration
problems” claims astonished
researcher!
Richard Golding, Carl Staelin,
Tim Sullivan, and John Wilkes
Hewlett-Packard Laboratories, Palo Alto, CA

HPL–CCD–94–11, 22nd April 1994

This paper was presented at the Tcl/Tk workshop in New Orleans, LA, 17–21 June
1994.

Copyright © 1994 Hewlett-Packard Company. All rights reserved.

“Tcl cures 98.3% of all known simulation configuration
problems” claims astonished researcher!

Richard Golding, Carl Staelin, Tim Sullivan, John Wilkes
Hewlett-Packard Laboratories, Palo Alto, CA

{golding, staelin, sullivan, wilkes}@hpl.hp.com

Abstract
We build detailed event-driven simulations of I/O systems as a way to earn a living, and use them to explore storage
system architectures. Our major tool (the TickerTAIP simulator) is a large kit of parts that can be configured,
combined, replicated, and connected in innumerable ways.Tcl lets us retain our sanity: it makes configuring the
simulator a breeze compared to our prior techniques.

In this paper we describe the general approach we adopted, and a few of the tricks and idioms we had to develop to make
it work. Our approach and techniques should be useful to anybody using Tcl as a control language for a set of
underlying objects.

• Disk: the object that ties together a Link (for the
bus speed), a DMAengine, a DiskMechanism, a
request scheduler and a Cache.

Each of these objects can usually be configured
further: for example, a Link takes a bandwidth and
overhead, a Cache has a size and an allocation
granularity. Indeed, the configuration data for
Disks and DiskMechanisms are so complex that
they are objects in their own right.

When we began, we wrote C++ code to control the
configuration, using a wealth of command-line
flags to select various design alternatives. This
rapidly got out of hand: for example, in our current
set of simulations for a new storage subsystem we
are running about thirty different experiments,
each of which compares a set of policy choices (each
of which can sometimes have multiple parameter
values) against a baseline.

Somewhere around the time we were running out
of letters of the alphabet for our command-line
interface, we happened across Tcl [Ousterhout94].
The result of that fortuitous event is the subject of
this paper.

2 What we do
The basic approach we adopt has been used by
others: Tcl scripts control the configuration of the
simulator’s components; C++ simulation objects
execute the simulation at full speed (sometimes for
several hours!) Scripts also control coarse-grained
execution of the simulator (such as deciding
whether to run another batch or not) and reporting

1 The problem
Our work exploring storage system architectures
requires us to do lots of “what if …” kinds of
analyses, and for this we’ve chosen to use detailed
event-driven simulation. The simulator we use,
TickerTAIP, is based loosely on the one described in
[Cao93] and [Ruemmler94].

A major thrust of our work is comparative studies:
“is it a good idea to tweak the xxx algorithm
thusly…?” We also range over a largish number of
different studies, such as disk request scheduling
algorithms, file system designs, disk and smart-
controller cache policies, adaptive data layout
schemes, and so on.

As a result, we have developed a simulation
environment that has about 90 different C++ object
classes that can be glued together in different ways.
Examples of these classes include:

• Link: encapsulates notion of bandwidth and
setup overheads for use in a bus (e.g., SCSI);

• DiskMechanism: a task that represents a
spinning magnetic disk, including timing
calculations for operations like seeks, rotational
latencies, and data transfer;

• Cache: a piece of memory into which data can
be inserted;

• IOsched: an algorithm that decides which
request should be serviced next if there are
several (e.g. FIFO, CSCAN, SSTF, …);

• DMAengine: a task that moves data between
different caches;

2

results. We have also put together a set of Tcl scripts for
extracting data from our runs and plotting comparative
analyses of a baseline configuration and a variant on it.
(This package is fetchingly referred to as tongs.)

The differences are in the details: we believe we have
evolved some techniques that are not immediately
obvious, and that make using Tcl in this way much easier
than it would otherwise be.

We’ve written about 5.3k lines of Tcl scripts so far;
roughly a third of this being in the result-extraction and
display code. The Tcl is used to manage roughly 40k
lines of C++ source code; it took us about 1.4k lines of
code to handle the interface between our simulator and
the Tcl interpreter in addition to the per-class code used
to create objects. The simulator has been in daily
production use for several months.

3 Key ideas
This section introduces the key points in our approach.

3.1 Building and naming C++ objects
Each C++ simulation object class has a Tcl function
(registered with Tcl as a command of the same name as
the class) that builds a new instance of the class,
constructs a unique name for it, and enters this into a
hashed lookup table that maps the text name to a pointer
to the new object. (This structure is very similar in intent
to the object table used in SmallTalk interpreters
[Goldberg83].) Thus:

set link [Link “SCSI-bus” -b 10e6]

constructs an object to represent a SCSI bus with a
bandwidth (-b) of 10MB/s, generates a name-string for it
(:Link:1:SCSI-bus:), and assigns this string to the Tcl
variable link. The real trick is that we then treat the Tcl
variables holding these name strings just like C++
pointers to the object itself: in our minds, we think that
the value $link is the link object—obtained by
dereferencing the name-string pointer in the Tcl way.

3.2 Dot functions
The first extension we made to this pointer idea was to
provide “dot functions”, in the style of C++. Thus:

$link.bandwidth

is a Tcl function that returns the currently-assigned
bandwidth of the link, and

$link.bandwidth 20e6

sets it to a new value.

We found the regular C-to-Tcl interface somewhat
verbose, and so resorted to some (highly stylized)
macros to encapsulate the interface to them. For
example:

TCL_ACCESS_FUNCTION_VOID_FUNCTION(Link, reset);

creates a C++ procedure that is used to reset stored
statistics counters in a Link object, invoked by $link.reset.

3.3 Type checking
The unique names we generate include the class name of
the object, and we construct our C++ class inheritance
hierarchy using a rule that says a derived class is named
by tacking something onto the end of the base class.
Thus:

Cache
< CacheSegmented
< CacheSegmentedReplacement

is a portion of the Cache-object hierarchy. Combining
this rule with the access macros allows us to provide
dynamic type checking: an object expecting a
CacheSpace can check that it hasn’t been given a plain
Cache (or even a Link!). For example, inside the
DeviceDriver Tcl constructor function we find:

TCL_GETVAR(Disk, CacheSegmented, cache, argv[4]);

which says that the current Disk-object constructor is
expecting a pointer to a CacheSegmented object (or
something derived from it), which it should put in the
variable cache. The “pointer” passed in is of course one
of our name-strings, used to index the object table.

3.4 Statistics
Since it is easy to build C++ objects from Tcl, we use this
approach rather than building any simulator objects in
C++. One pervasive example is in statistics-gathering.
Instead of building in statistics-gathering functions
wherever they might be needed, we instead store only a
pointer to an object from the Stats hierarchy, which looks
like this:

Stats < StatsHistogram

A Stats object accumulates mean, count, standard
deviation, and other statistical measures for a value. A
StatsHistogram also keeps a density distribution. The Tcl
code decides whether to create no Stats object at all,
whether it should be a low-cost Stats object, or a more
expensive StatsHistogram—and if the latter, how much
storage it should use. The C++ code at a measurement
point merely tests for a non-null pointer to a Stats object,
and invokes it if it is there.

As we build these Stats objects, we append their name-
strings to a global list, and then use this when the time
comes to print out statistics values—typically at the end
of a batch, or the end of the entire simulation.

We of course write out the results using Tcl: each object
provides a dot function (.report) that reports its values to
a reporter object, which in turn writes the results (in the
form of Tcl code) to a file. We call this from inside a Tcl
procedure that decides which values are interesting at
what stages of the simulation, and directs the results to a
particular file. This lets us write different results to

different output files easily, and will eventually
allow us to direct results to other tools, such as a Tk-
based monitor.

3.5 Complex-object initialization
The original code from which we derived several
portions of our simulator was written by Chris
Ruemmler [Ruemmler93]. One of the things it
needed to do was to provide descriptions of the
nitty-gritty details of a wide range of disk types
(including seek distance profiles, capacity, tracks-
per-zone, buffer-cache management policies, and
so on). The original approach to this was to build an
array of “info” structures, initialized by a C++ file.
Besides being error-prone, this was rather tedious
to change—especially by the time it took a few
minutes to relink the simulator.

We replaced this by Tcl scripts to build a set of info
objects, and insert these into a Tcl array, indexed by
disk type. This both allowed us much greater
control, and simplified the code. Even more
importantly, a change meant we now only had to go
around the few-second rerun loop rather than the
several-minute recompile-relink-rerun loop.

3.6 Overall control
We found it convenient to divide the configuration
functions into a number of phases, each
represented by a Tcl script:

• host: this describes the original system that we
are modelling

• back-end parameterization: sets default values of
parameters to use unless overridden for this
particular experiment

• back-end: constructs the simulation objects
• workload: makes C++ objects to read requests

from a trace file or synthesize a stream of
requests

• batch execution: the Tcl script that actually runs
the simulator, deciding whether the results
have converged or not, and deciding how large
a batch to run next

This has one significant advantage: we can inject
additional Tcl scripts between the phases to “post-
modify” a standard setup. For example, we can add
a script to limit all the host I/O requests to a single
bus, regardless of the original host configuration.

To help with default parameter management, we
found it useful to write a trivial Tcl procedure called
sset, which does nothing if the target variable
exists, or otherwise acts like set. The parameter files
contain “sset variable value” lines, allowing them to
be overridden by explicit set commands passed in
on the command line.

3.7 Result analysis/reporting/graphing
Our early .report functions emitted data in a form
convenient for post-processing by awk, but we soon
found ourselves writing data-analysis scripts in Tcl
instead. One problem remained: the cost of
scanning large amounts of data is quite high (a
typical simulation run emits about 15MB of results).
Much time was being spent in converting data back
and forth between the emitted format and values in
Tcl lists.

We’ve since moved to emitting the results as Tcl
scripts that can be sourced to reload the data we
really want. This gives us much more control over
what we load (for example, we don’t attempt to
load all 15MB per run for inter-run analyses), and
gives the Tcl data-analysis functions much more
immediate gratification when they need access to a
value to plot.

We have also built scripts that create plots using the
jgraph program. These scripts build an index of the
result files, then allow one to create graphs in a
declarative style by specifying only the names of
the simulator runs to be considered, the names of
the variables to be graphed, and the kind of graph
desired for each.

4 Lessons we’ve learned
• Tcl is way cool.
• More and more things have migrated into Tcl:

we’ve never moved anything back for
performance reasons.

• $object and dot functions work very well.
• Type checking saved our bacon a few times.
• The macros we use to control the size of the C-

to-Tcl interface are themselves rather daunting.
• We’ve had a few difficulties with the Tcl syntax,

the largest being the need to escape newlines
inside [square brackets]. Why can’t they be
treated like {curly braces}?

What we’d like different in Tcl:
• A single, simple way to ask the Tcl interpreter

“what kind of object is this thing” (array? list?
value?).

• An execution-trace facility like the regular
UNIX system shells’ -v option.

• A way to do C-style comments (partly because
of the need to escape newlines inside square
brackets).

5 Futures
• Develop a Tk interface that displays the

simulated-system structure, allows statistics
objects to be added while a simulation is

4

running, displays “live” status updates and
progress monitors, …

• Make the simulator available to other
researchers.

References
[Cao93] Pei Cao, Swee Boon Lim, Shivakumar

Venkataraman, and John Wilkes. The TickerTAIP
parallel RAID architecture. Proceedings of 20th
International Symposium on Computer Architecture
(San Diego, CA), pages 52–63, 16–19 May 1993.

[Goldberg83] Adele Goldberg and David Robson.
Smalltalk–80: the language and its implementation.
Addison-Wesley, Reading, Mass, May 1983.

[Ousterhout94] John K. Ousterhout. Tcl and the Tk
toolkit, Professional Computing series. Addison-
Wesley, Reading, Mass. and London, April 1994.

[Ruemmler93] Chris Ruemmler and John Wilkes.
UNIX disk access patterns. Proceedings of Winter
1993 USENIX (San Diego, CA, 25–29 January
1993), pages 405–20, January 1993.

[Ruemmler94] Chris Ruemmler and John Wilkes.
An introduction to disk drive modeling. IEEE
Computer, 27(3):17–28, March 1994.

