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Abstract

At the heart of any con�guration or capacity planning
algorithm for storage systems, there lies a \what if"
question: given a device and a set of workloads ac-
cessing data on the device, will the quality of service
requirement for each workload be satis�ed? This is,
in general, a hard question to answer because of the
complexity of workloads in real life. In this paper, we
consider QoS bounds on the 95th percentile of response
time and demonstrate an approximate method to ver-
ify that the QoS requirement is satis�ed for a complex
and fairly general set of workloads, including work-
loads with phasing (on/o� behavior) and correlations
with other workloads.

1 Introduction

The Forum project [1] addresses the problem of ca-
pacity planning and automatic con�guration of storage
devices to meet QOS requirements of applications. In
its simplest form con�guration may be thought of as a
data layout problem: how to allocate (lay out) storage
to a given set of applications on a given set of devices
so that speci�ed QOS requirements of the applications
(such as response time, minimum throughput or avail-
ability) are satis�ed. The capacity planning problem
is the other side of the coin: it asks what devices are
required so that the QoS requirements of a given ap-
plication set can be met. These are issues typically
handled manually by system administrators, who use
a combination of experience, rules of thumb and trial
and error methods to produce acceptable con�gura-
tions. This becomes harder and harder as the sizes of
storage installations increase, the application require-
ments become more complex and new devices appear
on the market. We automate this process by treat-
ing the problem as a constrained optimization: a good
solution optimizes objectives (such as cost or perfor-
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mance) while meeting application requirements. There
are many optimization methods which may be applied
to the problem; however, at the least, they all require
an answer to the following modeling question: given a
set of devices, a set of applications and a storage layout
(an assignment of storage on devices to applications),
how does it perform? Does it meet the requirements of
the applications? This is the \what if" question that
we address, in part, in this paper.

Note that this deceptively simple question is quite
hard to answer, requiring good models of the I/O work-
loads created by the applications, an understanding
of how they interact and interfere with other work-
loads, and how the device responds to the combined
workloads. One solution is to use simulation models,
since these can handle complex interactions of work-
loads and devices, but, since this is relatively slow, it
is not a practical solution for use in the inner loop of
optimization techniques, which may ask thousands of
such \what if" questions en route to a good solution.
Standard analytical techniques can answer such ques-
tions if the workloads are su�ciently simple, but in real
life, workloads can have complex ON/OFF phasing be-
havior as well as correlation between the timing of the
ON/OFF phases of di�erent workloads. In solution,
we have developed approximate analytical techniques
which are quite powerful in dealing with complex work-
loads and devices.

We begin with a speci�cation of the problem and a
workload model in Section 2. A model is developed
using a new metric \Short term utilization" in Section
3, some validation results are presented in Section 4,
and conclusions are in Section 5.

2 Problem and workload speci-

�cation

We choose to narrow the problem somewhat by con-
sidering only the applications using one device, and
focusing only on one metric: response time.
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Figure 1: TPC-D Query 3 I/O trace. I/Os to di�erent
tables occur in phases which overlap little.

Problem speci�cation

We are given a device D and a set of applications
Ai (i = 1; : : : ; n), accessing data stored onD. Each ap-
plication Ai requires that 95% of its storage requests
must see a response time smaller than Ti. Will the
requirement of each application be satis�ed?

Workload speci�cation

In order to answer this question we need an accurate
characterization of the workload imposed by each ap-
plication. Our workload model is derived from an anal-
ysis of traces of I/O activity from several applications,
including the TPC-C [2] and TPC-D [3] benchmarks.
Traces of the TPC-D benchmark, in particular, in-
dicate that the request arrival process would not be
well characterized by a Poisson or even a general re-
newal process approximation. I/O activity to a ta-
ble in the TPC-D benchmark occurs in well-separated
phases (Fig. 1). Further, the I/O activity to di�er-
ent tables is not independent; some tables are never
accessed at the same time, whereas others are always
accessed together. Ignoring these correlations in I/O
activity leads to very poor models. For example, when
there are several workloads which have high request
rates during their ON phases, but no two workloads
are ever on together, it may be possible to put all the
workloads on the same device. If the model ignores this
correlated behavior, then it will require the workloads
to be put on separate devices to avoid the possibility
of the workloads interfering with each other; this is a
much higher cost solution.

Accordingly, we choose a phased, correlated work-
load model. I/Os produced by an application are sep-

arated into streams; each stream accesses one store. A
store represents a logical chunk of storage; for example,
a database table. Each stream is modeled through a
modulated ON/OFF Poisson process. During the ON
state, I/O requests from stream Pi arrive according to
a Poisson process with rate �i; the ON state persists for
an exponential length of time with mean oni. During
the OFF state, there are no requests from stream Pi;
the OFF state persists for a length of time with mean
o�i. We model correlation in the phasing behavior of
di�erent workloads by looking at their states at the in-
stant of transition, when a stream Pi goes from OFF
to ON state. The correlation between streams Pi and
Pj is represented by the probability

pij = Prob [Stream Pj is ON when stream Pi

comes ON]:

There are basically four possible correlations:

� Pi and Pj are independent, in which case pij =
onj=(onj + o�j), which is the steady state proba-
bility of �nding Pj in the ON state.

� Pj is always ON when Pi comes on, in which case
pij = 1. We de�ne pii = 1 for all i.

� Pj is never ON when Pi comes on, in which case
pij = 0.

� Some other correlation, in which case pij has a
measured value.

The values of the parameters �i, oni, o�i and pij for
each i and j in f1; 2; : : : ; ng can be derived from I/O
traces. (The de�nition of these and other parameters
used in this paper are summarized in Table 1 for easy
reference.) Other useful information derived from the
I/O traces includes the distribution of request sizes, the
fraction of requests that are reads and the distribution
of sequential run lengths (i.e., sequences of I/Os which
access logically consecutive storage locations). These
may be used to derive the distribution of service time
for requests of stream Pi at a given deviceD. The com-
putation of the service time may be simple or complex,
depending on the device used (see [4]); in this paper,
we assume that the mean and variance of service time
at the device can be computed and is available for each
stream, and that the service times for requests from a
stream are independent and identically distributed.

3 Model

Traditional queueing models deal well with Poisson
workload processes, and with some variants of these.



Table 1: Summary of notation.
Parameter de�nition

�i request rate of stream Pi in ON state
oni mean duration of ON state for stream Pi
o�i mean duration of OFF state for stream Pi
pij probability that stream Pj is ON when Pi comes ON
Ti bound for 95th percentile of response time for stream Pi
ti a time instant when stream Pi comes ON
Wi(t) work (from all streams) arriving at device D in period (ti; ti + t)
Wij(t) work from stream Pj arriving at device D in period (ti; ti + t)
W 0

ij(t) work from stream Pj arriving at device D in period (ti; ti + t) given that Pj is ON

Sij(m) service time of mth request from stream Pj after time ti
ai mean service time for request from Pi
bi variance of service time for request from Pi
Nij(t) number of requests from stream Pj in period (ti; ti + t)

However, there are few results available that can ac-
commodate workloads as complex as those proposed
here. The usual means of handling such cases is to
use very simple metrics, for example, utilization |
the long-term average fraction of time that the device
is busy. In most cases, even when the workloads and
devices involved are complex, it is quite simple to com-
pute the utilization. It is well understood that, for sta-
bility, the utilization must be less than 1; also, queue
lengths and response times tend to decrease with uti-
lization. This leads to such rules of thumb as \keep
the utilization below 0.5" or some other threshold in
order to achieve acceptable response times. The actual
threshold used in such rules of thumb is based on intu-
ition and experience, and is usually very conservative,
since it is based on very little information.

Intuitively, queues build up and queueing delays oc-
cur in stable systems (where the utilization is less than
1) because of short term variations in the rate that
work arrives. When requests arrive faster than the de-
vice can service them, then queues form. In the long
term, the device \catches up" and the queue disap-
pears, but some requests su�er queue delays in the
interim.

One way to limit queue delay is, therefore, to re-
quire that the work that arrives at a device in a given
\short" period T must not exceed what the device can
perform in that period of time. The time T is a tun-
able parameter; the smaller the value of T is, the more
stringent this requirement becomes. For feasibility, T
must be larger than the device service time of the re-
quest. We show later in this paper that if this con-
straint is satis�ed, the total amount of work in the
queue does not exceed what the device can perform in

time T . For First-Come-First-Served scheduling, this
guarantees that the response time of any request does
not exceed T . Since most scheduling methods that we
use are likely to be at least as good as FCFS, this con-
straint allows us to bound response time, at least in a
heuristic sense, even when the response time cannot be
directly computed. An additional bene�t is that this is
done using a utilization measure, and utilization mea-
sures are easy to compute in most cases.

3.1 Short-term utilization

The following theorem makes concrete the intuition
that we can limit queue lengths by limiting the short-
term variations in the rate that work arrives for the
device.

Theorem 1 If a work-conserving device starts with no

requests pending, and all the requests arriving at the

device in any period of length T can be served by the

device in time T or less, then all the requests pending

at the device at any time t can be served in time T or

less.

Proof : Let

work pending(t) � the sum of the (remaining)

service times for requests

in queue at time t

work arrived(t1; t2) � the sum of service times

of requests that arrive in

the interval (t1; t2)

busy time(t1; t2) � the amount of time in

(t1; t2) that the device is busy.



Since the device starts with no requests pending,
work pending(0) = 0. Also, work arrived(t; t + T ) � T
for all t > 0. We break up time into intervals (0; T ),
(T; 2T ), (2T; 3T ), : : :, (nT; (n+1)T ),: : :, and prove that
work pending(t) � T in each such interval. The proof
is by induction on n.
For the �rst interval (0; T ): since the total service

time for all the requests arriving in (0; T ) cannot ex-
ceed T , the proposition holds trivially.
Now, we show that if work pending(t0) � T for t0 in

((n � 1)T; nT ), then this must also hold for the next
interval. For t in (nT; (n+ 1)T ),

work pending(t) = work pending(t� T )

+work arrived(t� T; t)� busy time(t� T; t):

Clearly, busy time(t�T; t) � work pending(t�T ), since
work pending(t � T ) � T , and time T has elapsed in
(t� T; t). Therefore,

work pending(t) � work arrived(t� T; t) � T:

By induction, work pending(t) � T for t 2 ((n �
1)T; nT ), n = 0; 1; : : :.

In e�ect, Theorem 1 says that if it can be guaran-
teed that the requests from the combined workload at
device D arriving in every interval of length T seconds
do not require more than T seconds to serve, then the
response time for all requests is bounded by T sec-
onds. For practical use, this requirement must be re-
laxed slightly. In most cases, it is hard to guarantee

that the service time of requests arriving in any in-
terval of length T will not exceed T , because neither
the workload process nor the service times of the re-
quests at device D are known exactly. In general, only
a probabilistic description is available. In order to ac-
commodate this, we relax the theorem into a heuristic
rule:

If the total service time required by the re-
quests generated by the combined workload
at device D in every interval (t; t + T ) con-
taining a request from stream Pi is less than
T seconds with a probability p, then the re-
sponse time for requests from stream Pi is T
seconds or less with probability p.

Note well that this is not a theorem; it is merely
an approximation based on Theorem 1. Using this ap-
proximation, we may convert the requirement that 95%
of the requests see a response time of less than T sec-
onds into the requirement that the work arriving at

device D in intervals of length T takes less than T sec-
onds to perform with probability p = 0:95; we call this
the \short-term utilization constraint". In the follow-
ing sections, we show how this rule may be used, and
some validation of the fact that it usually works well.

3.2 Verifying the Short term Utiliza-

tion constraint

The response time seen by requests from a stream Pk
depends on the total rate of work arriving at the device.
The only times at which the rate of work arriving at
the device increases is when some stream changes from
the OFF state to the ON state. Therefore, to verify
that the response time seen by requests from Pk is less
than Tk, it is su�cient to verify that the response time
for Pk is less than Tk immediately after Pi comes ON,
for each possible Pi. In other words, if we wish to
verify that an assignment of streams P1, P2, : : :, Pn to
device D satis�es the short-term utilization constraint,
it is su�cient to verify that it the total work arriving
at device D in the interval (ti; ti + Tk) (where ti is the
time that Pi switches ON) is less than the work the
device can do in in time Tk, for each pair (i; k), where
i 2 f1; 2; : : : ; ng and k 2 f1; 2; : : : ; ng | a total of n2

tests. As we shall see, this can be reduced to n tests.
Let

ti � a time instant when stream Pi

comes ON

Wi(t) � work (total service time of requests)

arriving in (ti; ti + t)

Wij(t) = work (total service time of requests)

arriving from stream Pj in

time (ti; ti + t)

We can then represent the short-term utilization
constraint as

Pr[Wi(Tk) < Tk] � p

for each i and k 2 f1; 2; : : : ; ng (1)

Verifying the inequality (1) requires the computation
of the tail of the distribution of Wi. The distribution
of Wi is, in general, di�cult to compute; however, we
approximate Wi as a normal random variable, which
allows us to compute the tail of the distribution from
the mean and variance of Wi(Tk). We show next how
to compute this mean and variance.
In order to compute the moments of Wi(Tk), we

assume that no stream switches state in the interval
(ti; Tk); this is reasonable, since Tk is of the order of



the response time(k), which is likely to be of a much
smaller order than the time between change of state
for the streams.
The total work is the sum of work brought in by the

individual streams:

Wi(t) =

nX
j=1

Wij(t):

Let

W 0
ij(t) � work (total service time of requests)

arriving from stream j in

(ti; ti + t) given that Pj is ON

pij = probability that stream j is ON at time ti

Then,

E[Wi(t)] =

nX
j=1

E[Wij(t)]

=

nX
j=1

pijE[W
0
ij(t)]

V ar[Wi(t)] �

nX
j=1

V ar[Wij (t)]

=

nX
j=1

pijV ar[W
0
ij (t)] +

nX
j=1

pij(1� pij)E[W
0
ij(t)]

2

We now compute the mean and variance of W 0
ij(t).

Suppose that stream j is ON at time ti, and there are
Nij(t) requests with service times Sij(1), Sij(2), : : :,
Sij(Nij(t)) from stream j to device D in the interval
(ti; ti + t). Since the stream Pj (j 6= i) is assumed to
be Poisson with mean rate �j when it is on, Nij(t) is
Poisson distributed with mean �jt.

E[Nij(t)] = �jt

V ar[Nij(t)] = �jt

Let the mean and variance of Sij(�) be aj and bj re-
spectively. Then the mean and variance of W 0

ij(t) can
be computed using standard formulae for random sums
[6]:

W 0
ij(t) = Sij(1) + Sij(2) + � � �+ Sij(Nij(t))

E[W 0
ij(t)] = E[Nij(t)]E[Sij(1)]

= �jtaj

V ar[W 0
ij(t)] = E[Nij(t)]V ar[Sij(1)]

+V ar[Nij(t)]E[Sij(1)]
2

= �jtbj + �jta
2
j

E[Wi(t)] =
nX

j=1

pijE[W
0
ij(t)]

=

nX
j=1

pij�jtaj

V ar[Wi(t)]

=

nX
j=1

pijV ar[W
0
ij (t)]

+

nX
j=1

pij(1� pij)E[W
0
ij(t)]

2

=

nX
j=1

pij�j(a
2
j + bj)t+

nX
j=1

pij(1� pij)�
2
ja

2
j t
2

We now approximate Wi(t) by a normal random
variable with the computed mean and variance. The
short-term utilization constraint

Pr[Wi(Tk) < Tk] > p

translates into

�

 
Tk �E[Wi(Tk)]p
V ar[Wi(Tk)]

!
> p

where �(�) is the cumulative distribution function of
the unit normal random variable. Since � is a mono-
tone increasing function, we can re-write this as

E[Wi(Tk)] + ��1(p)
p
V ar[Wi(Tk)]

Tk
< 1 (2)

where ��1 is the inverse function of �, that is,
��1 (�(u)) = u. We de�ne the quantity on the left
hand side of this inequality as the short-term utiliza-
tion function of device D.

STU(p; Pi; Tk) �
E[Wi(Tk)] + ��1(p)

p
V ar[Wi(Tk)]

Tk
:

Then, we can verify that the 95th percentile of re-
sponse time for Pk by checking that:

STU(0:95; Pi; Tk) < 1 for i = 1; : : : ; n:

Thus, verifying that the response time requirement for
all n streams amounts to checking n2 such inequalities.
However, it is easy to show that STU(p; Pi; t) decreases
monotonically as t increases. Therefore,

n
max
k=1

(STU(p; Pi; Tk)) = STU(p; Pi;
n

min
k=1

(Tk)):

Thus, we can verify the response time for all the
streams by checking the n inequalities

STU(0:95; Pi; Tmin) < 1 for i = 1; : : : ; n;

where Tmin = minnk=1(Tk).



4 Validation results

The short term utilization bound is based on a few
large assumptions. The foremost of these assumptions
is that the generalization of Theorem 1 to the 95th per-
centile is accurate. The other large assumption is that
Wi(t) can be approximated as a normal random vari-
able. To test whether these assumptions hold, we ran a
series of experiments to determine accuracy and tight-
ness of the short term utilization bound for a sample
synthetic workload. We then ran a number of sensitiv-
ity experiments to determine which parameters highly
impact the correctness and tightness of the bound.
We �rst present some de�nitions, and describe the

baseline test case. Next, we present the sensitivity tests
and their results, and �nally we close with a summary
and notes for improvement of the model.

4.1 De�nitions

We say that a model is accurate if every con�guration
that the model predicts to be feasible, is actually feasi-
ble. In this case, feasibility means that the short term
utilization bound is actually greater than the measured
short term utilization of that con�guration, or that the
bound is pessimistic.
The tightness of a model is the ratio between the

response time bound predicted by the model and the
actual value based on measurements. If the model is
perfectly accurate, then the tightness should never be
less than one. If the model is a perfectly tight pre-
dictor, the tightness should be exactly equal to one.
Note that the short-term utilization constraint, as pre-
sented, does not actually predict the response time; it
merely veri�es a bound on the response time. How-
ever, we can �nd the lowest response time bound that
a given con�guration can meet under the short-term
utilization constraint. Tightness is the ratio of this
bound to the actual 95th percentile of response time
found using simulation.
The sensitivity of a model is a measure of how much

the tightness varies depending on the values of the pa-
rameters to the model. A model is sensitive to its
parameters if the variance in tightness is high.

4.2 The baseline experiment

A con�guration for the short-term utilization model is
fully characterized by the following parameters:

n The number of streams

�i The arrival rate for stream Pi

�i The service rate for stream Pi

pi;j As above, the correlation between streams Pi and
Pj .

Ti The required bound on 95th percentile of response
time for stream Pi.

For purposes of explanation, we will assume the last
four are identical over a �xed set of streams; however,
this assumption is relaxed in the actual experiments.
To evaluate the short term utilization model, we con-

centrate on the last of these parameters T to compare
against measured values. Given n, �, � and pi;j , we
take the smallest value of T for which the formula holds
as the predicted 95th percentile of response time. Since
�nding this value of T is di�cult from the formula,
we �nd the value experimentally through a bisection
search on possible values of T .
We obtain the actual 95th percentile of the response

time by simulating a storage device with a given dis-
tribution of service time, using the queuing simula-
tion package that is part of the Pantheon simulator
[5]. Given the speci�cation of a set of streams, we gen-
erate a synthetic workload matching the parameters
of the streams and measure the 95th percentile of the
response time for each stream over a batched set of
independent runs.
The simulation experiments consist of one set of

baseline experiments and several sets of sensitivity ex-
periments in which one parameter is varied from the
baseline values. The baseline input to the simulator is
a set of 8 streams, each with a Poisson arrival process
with rate � = 1 request/sec, with a mean ON time of 5
seconds and a mean OFF time of 3 seconds. The device
serves requests from each stream in an exponentially
distributed length of time with mean 0:15 seconds.
We cluster the streams into three correlation groups.
Group one consists of streams 0 through 3, group two
of streams 4 and 5, and group three of streams 6 and 7.
Groups one and two are completely correlated within
the group and anti-correlated between groups. Streams
in group three are completely independent of any of
the other streams. The tightness results for this are
shown in Table 2. The conclusion to be drawn is that,
at least for the baseline case, the response time bound
produced by the model is accurate, but not very tight.

4.3 Sensitivity analysis

We next show the results of a set of experiments in
which one parameter is varied from the value set in the
baseline case; the remaining parameters are as in the
baseline experiment. The purpose of these experiments



Table 2: Baseline results.
stream predicted measured tightness accurate

bound 95th percentile
stream0 0.063 0.047 1.36 yes
stream1 0.063 0.049 1.30 yes
stream2 0.063 0.049 1.30 yes
stream3 0.063 0.050 1.28 yes
stream4 0.049 0.045 1.08 yes
stream5 0.049 0.048 1.02 yes
stream6 0.065 0.049 1.33 yes
stream7 0.065 0.049 1.33 yes

is to test the sensitivity of the tightness and accuracy
of the bound produced by the short-term utilization
model to changes in each parameter.

Varying arrival rate

In this experiment, mean interarrival time varies from
0.2 to 2.0 seconds: 0.2, 0.3, 0.4, 0.6, 0.8, 1.0 (baseline),
1.3, 1.6, 2.0. The tightmess of the bounds is shown in
Fig. 2. The bound based on the short-term utilization
constraint is inaccurate when inter-arrival times are
very large, or, in other words, when the arrival rate
is very low. This can be traced to the fact that every
request sees a response time that is at least as large as
its own service time; however, the model is based on
the distribution of work arriving at the device in short
intervals. At low request rates, the probability that
there will be any requests in the interval is small, and
hence, the predicted bound on response time is smaller
than a single-request service time. If accuracy of the
model at low arrival rates is an issue, the inaccuracy
here can be corrected in a number of ways. Perhaps
the simplest is to treat the bound produced by the
model as a bound on the queue delay rather than the
response time; equivalently, one adds one service time
to the bound produced by the model to get a bound
for the response time. The tradeo� is that this leads
to a looser bound at higher arrival rates.

Varying the heterogeneity of inter-arrival time

In this experiment, we changed the streams from be-
ing homogeneous to having varying mean interarrival
times. To compute the inter-arrival time r(i) for a
stream Pi, assuming a baseline value b:

r(i) = 2log(b)+(bn=2c�i)c

where c, the expansion factor, controls the spread
of the points. This formula spreads the n points
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Figure 2: Tightness of response time bound as inter-
arrival time varies.
Inaccuracies are points where the lowest response time
bound predicted using the model was higher than the
value measured from simulation (i.e., tightness < 1).
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Figure 3: Tightness of response time bound as the het-
erogeniety of inter-arrival time varies.

evenly in log space, with c = 0 representing homo-
geneity. For this experiment, we evaluated at c =
0; 0:1; 0:5; 1:0; 1:5; 2:0. (Note that a larger value of c
implies a larger overall load on the system.) The sen-
sitivity of the tightness of the response time bound is
shown in Fig. 3. The �gure shows that the bound
is sensitive to the heterogeneity of interarrival period.
However, this is most likely an artifact of increasing
the total request rate. There are no tightness values
plotted for the case c = 2:0 because the queue lengths
exploded at this point, leading to very large response
times. This was accurately predicted by the model in
every case.

Varying correlations

This experiment examines the sensitivity of the short
term utilization constraint to the correlations between
streams. We vary the fraction of streams that are sin-

gletons, that is, streams independent of other streams.
A large number of singletons means that most streams
are independent, whereas a small number means that
most streams are interdependent. Fig. 4 shows the
tightness of the bound as the fraction of singletons
changes. We conclude that the fraction of singletons
does not highly impact the tightness of the bound. In
general however, the lower the fraction of singletons,
the tighter the bound becomes.
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Figure 4: Tightness of response time bound as the frac-
tion of singletons varies.

Singletons are streams independent of all other
streams.

4.4 Conclusions from validation exper-

iments

Overall, we �nd that the bound produced by the short-
term utilization method is accurate in the large ma-
jority of cases. The cases in which it is not accurate,
predicting a response time smaller than actually found
by simulation, are primarily cases where the request
rates of the streams are very low; clearly these are not
usually the cases one is most concerned with. Where
this is an issue, the model can be recti�ed to correct
these inaccuracies. The bound is quite conservative in
a large fraction of the experiments performed. This is
to be expected, since we are dealing with a very gen-
eral workload model, and the metric we are bounding is
the 95th percentile of response time which is generally
quite sensitive to variations in the workload. Never-
theless, it must be noted that this method should be
used only when correctness of the bound is the primary
requirement rather than the tightness of the bound.

5 Summary

In this paper, we have proposed an approximate
method to answer a \what if" question that is at the
heart of every capacity planning method for storage
systems: if a given set of applications (data stores +
I/O request streams) is assigned to a given device, will
the performance requirements of each application be
met? The performance metric we use is the 95th per-
centile of response time.



We have de�ned a very general workload model con-
structed from processes with ON and OFF phases.
These processes can be correlated, which allows us to
model a wide variety of real workloads. We have de-
�ned a metric called the \short-term utilization" and
translated the question above into a constraint based
on this metric, and shown how to evaluate it. Valida-
tion experiments which compare the bound produced
by this method to the actual 95th percentile of response
time (based on simulation), show that the bound is ac-
curate, but quite conservative in most cases.
This method has been incorporated into a con�gura-

tion tool for layout of large applications; in the future
we shall report on its performance in actual systems.
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