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Typical storage system

TB disk storage

…

Clients: MB file system caches

…

Array:
GB block cache

Gbit/s network

Let’s begin by considering a typical storage system.

At the top, you have front-end clients, which typically have hundreds of megabytes 
of file system cache RAM.

At the bottom, you have a back-end storage array, which has gigabytes of cache 
RAM.

The array sits in front of a disk farm with terabytes of long-term storage.

Finally, you have a fast network connecting the clients to the array. The network 
latency is orders of magnitude lower than the disk latency, to the point where you 
can think of the array cache as being a low-cost extension of the client caches.

(Cache sizes have increased since we began our study, but the relative sizes of the 
client and array are about right.)

Now, you might expect that the total effective cache is equal to the aggregate of the 
client and array caches. Unfortunately, that is usually not the case.
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Motivation

• Array cache is inclusive
• Blocks duplicated in the client and array

• We make the array cache exclusive
• Blocks either at the client or array

“Your cache ain’t nuthin’ but trash.”
–Muntz and Honeyman

As Muntz and Honeyman observed, “your cache ain’t nuthin’ but trash!”.

The problem is that the array cache is typically inclusive, which means that much of 
its contents duplicates that of the clients.

Inclusive caching reduces the effective size of the aggregate cache, which is 
wasteful since array cache isn’t cheap.

Inclusive caching hurts performance, since more clients requests may go out to the 
disk than is necessary.

What we have done is design and evaluate schemes that make the array cache 
exclusive, which means that its contents is distinct from that of the client.
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Client LRU

Typical inclusive caching

Array
read

Client
read

Array LRU

Discard

Discard

Client
request

Blocks cached in two places: wasteful! 

Let’s simplify the previous picture a bit, by ignoring inter-client sharing, and taking 
all of the client caches and thinking of them as a single, large cache.

Even thought each individual client cache is smaller than the array cache, in 
aggregate the client cache may be about as large as the array cache.

The boxes on the right are simply LRU caches: we put data blocks in at the tail, and 
eject them from the head.

Now, consider what happens when the client issues a request for a block that isn’t in 
any of the caches.

First, the array reads the block off of a disk, and puts it into its cache.

Then, the client reads the block out of the array, and puts in into its cache.

Now, the block will be duplicated in both caches until the client issues enough 
requests to push the block out of one of the caches.

This duplication is wasteful: if the client doesn’t have a block in its cache, the array 
is likely not to have it either. If the client does have the block, it doesn’t matter if 
the array has it or not.
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Array LRU

Client LRU

Exclusive caching

Discard

Client
request

Client
read “Demote”

Blocks cached in only one place

Let’s return to our abstract storage system.

Again, consider what happens when the client issues a request for a block that isn’t 
in any of the caches.

Now, the client reads the block straight to the tail of its cache, basically bypassing 
the array.

The array cache only acts as a buffer between the disk and the network. We’ll come 
back to this point later.

When the block reaches the head of the client cache, the client uses a new demote 
operation to transfer the block to the tail of the array cache. The array discards the 
block when it reaches the head of its cache.

Excellent. We have stopped the duplication of blocks, and made the array cache 
into an extension of the client cache.
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Outline

• Single-client evaluation

• Multi-client evaluation

• Conclusions

For the rest of this talk, I’ll present results of evaluations of our exclusive caching 
scheme using both simple and complex models of storage hierarchies.

I’ll first present the results of simple experiments that use our abstract, single-client 
model.

Then, I’ll present the results of experiments with multiple clients and realistic 
workloads.
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Single-client evaluation
• Verify that exclusive caching works

• Study caching schemes in simple systems:
• Single client cache, equal in size to array cache
• Read-only workloads

• Analyze sensitivity to:
• Reduced bandwidth
• Larger and smaller array cache sizes

The primary goal of the single-client evaluation is to confirm that our reasoning 
about exclusive caching schemes is sound, and that we have the potential to obtain 
useful performance improvements.

To simplify reasoning about cache behavior, we consider the behavior of schemes 
in the abstract system with a single large client cache, equal in size to the array 
cache.

We consider read-only workloads throughout this study. For many workloads, write 
requests only form a small fraction of all requests. Also, the type of arrays we are 
modeling generally have a separate, non-volatile write cache.

Since our design relies on the existence of a high-bandwidth, low-latency network 
connecting the client and the array, we analyzed how our exclusive scheme 
performed under reduced bandwidth.

We also analyzed how our scheme performed when the array cache was larger or 
smaller than the client cache.
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Predicting benefits: Random
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We can estimate the benefit of switching from an inclusive to an exclusive cache 
scheme by looking at the graphs of the hit rate vs. cache size for each workload.

This graph represents the hit rate for a random workload, in which hit rate rises 
linearly with cache size.

For the abstract single-client setup, we expect that an array with an inclusive 
scheme will contain the same data as the client, and all requests that miss at the 
client will also miss in the array.

This red line here show the hit rate in the client.

Conversely, we expect an array with an exclusive scheme to contain different data 
than the client.  We just sum up their cache sizes to find the cumulative hit rate.

Since the first set of requests hit in the client, the remaining requests must hit in the 
array. This marker bar here represents the increase in the overall hit rate due to hits 
in the array.



9

Theodore Wong    USENIX 20029

Predicting benefits: Zipf-like
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We can perform a similar analysis for Zipf-like workloads, in which the probability 
of accessing block i is proportional to 1/i. We see this kind of access pattern in file 
and web server systems.

We see that there’s still an improvement with exclusive caching schemes, but the 
benefit is smaller since most requests already hit in the client.
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Single-client workloads: Synthetic

• RANDOM (e.g., transaction processing)
• ZIPF (e.g., web server; file server)

• Simulated in Pantheon

For our initial single-client experiments, we constructed a set of synthetic 
workloads that we predicted should perform poorly with inclusive schemes, but 
quite well with exclusive schemes. Again, I stress that we did this to ensure the 
sanity of our design and theoretical understanding.

We used two synthetic workloads that roughly model real workloads: RANDOM, 
which is similar to transaction-processing workloads, and ZIPF, which models Unix 
file server and web server access patterns.

We simulated our caching schemes in Pantheon, a detailed array simulator from HP 
that models just about everything about in a disk array, including accurate disk 
timing and network controller overheads.
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Single-client schemes

• INCLUSIVE
• Baseline “typical” scheme

• DEMOTE
• Exclusive caching scheme
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Single-client results: Synthetic

Exclusive caching works
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Our results show that our expectations about the DEMOTE caching scheme were 
correct. We obtained impressive speedups for both synthetic workloads.

We report mean request latency as seen by the client. Lower is better. Blue bars are 
us.

ZIPF shows an interesting result: with ZIPF, we would expect the client to hold the 
most popular blocks, and request other blocks relatively infrequently. Even so, we 
still obtain a noticeable speedup with the DEMOTE scheme.
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Sensitivity evaluation results: Network

Resilient to bandwidth variation

RANDOM

0
2
4
6
8

10
12
14
16

0.01 0.10 1.00 10.00
Bandwidth (Gbits/s)

M
ea

n 
la

te
nc

y 
(m

s) INCLUSIVE
DEMOTE

ZIPF

0

1

2

3

4

5

0.01 0.10 1.00 10.00
Bandwidth (Gbits/s)

M
ea

n 
la

te
nc

y 
(m

s) INCLUSIVE
DEMOTE

Having confirmed that our synthetic workloads obtained speedups from exclusive 
caching, we go on to see how our exclusive scheme stacks up when we reduce the 
available network bandwidth.

And we see that we do pretty well. Again, these graphs show mean request latency. 
Lower is better. Blue is us.

Our scheme holds up well except for very low bandwidths. At the crossover point, 
the extra network transfer cost of demotions outweighs any benefits obtained.

Better yet, the performance degradation is graceful. There are no cliffs.
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Single-client workloads: Real

• CELLO99: File server
• TPC-H: Database server benchmark
• DB2: Multi-client database workload
• HTTPD: Web server farm

• Simulated in fscachesim

Since our synthetic workloads obtained impressive speedups from exclusive 
caching, we went on to see how more realistic workloads would fare. For each 
workload, we used client and array cache sizes that were of the same magnitude as 
the working set of the load.

CELLO99 is a month-long trace of a file server.

TPC-H is a portion of an audited run of the TPC-H transaction processing 
benchmark.

DB2 is a trace of an eight-node parallel database system performing join, set, and 
aggregation operations.

HTTPD is a one-hour trace of a seven-node parallel web server.

Since we were primarily concerned with cache behavior only, and since Pantheon 
couldn’t simulate the larger caches required by these workloads, we used a simpler 
cache simulator called Pantheon that omitted the detailed disk and network models.
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Single-client results: Real
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Exclusive caching works for real loads

Our results demonstrate that our DEMOTE caching scheme provides benefits to 
real-life workloads. We used faster disk models than those used in the synthetic 
experiments, commensurate with those that existed in the original traced systems.

HTTPD shows an interesting result: even though the client contains most of the 
working set, as evidenced by the low mean latency with the INCLUSIVE scheme, 
switching to the DEMOTE scheme still yields a speedup.
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Sensitivity evaluation results: Cache size

Resilient to array cache size variation
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By now, you’re probably wondering what happens if our assumption about equal 
client and array cache sizes is bogus.

Here, we show the effect of varying array cache size for TPC-H while keeping the 
client cache size constant. Lower is better. Blue is us. The dotted line shows the 
point where the client and array caches sizes are the same.

The answer is that our exclusive scheme still performs OK. We only start to get into 
trouble when the array cache is an order of magnitude smaller than the client cache, 
and of course we get no improvement if the working set fits in the client cache 
alone.
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Single-client summary

Exclusive caching yields significant speedups
Resilient to bandwidth, cache size variation

Workload Speedup
CELLO99 1.3

TPC-H 1.1
DB2 1.4

HTTPD 2.2

Workload Speedup
RANDOM 7.5

ZIPF 1.7

Overall, we get up to a 7.5 times speedup with our DEMOTE exclusive caching 
scheme for all of the single-client workloads.

Also, the benefits of exclusive caching are resilient to bandwidth and array cache 
size variations.
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Multi-client evaluation

• Predict benefits for real systems
• Large array cache, smaller client caches

• Consider effects of inter-client sharing

• Define two types of workload:
• Disjoint workloads: No block sharing
• Shared workloads: Some block sharing

We now move on to multi-client evaluation. Having seen that realistic workloads 
obtain speedups in the single-client case, we decided to evaluate the performance of 
exclusive caching schemes in realistic system environments with multiple request 
streams.

Multi-client systems have a new variable: the degree to which clients request the 
same blocks from storage.

It helps to divide multi-client workloads into two families: disjoint workloads in 
which client do not access any of the same blocks, and shared workloads in which 
clients access some of the same blocks in the working set.
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Shared workloads and DEMOTE

Need to save “disk-read” blocks at array

Clients

Array LRU

Request 1

Request 3

Re-read! Request 2

For shared workloads, our DEMOTE protocol may actually hurt performance, by 
overly aggressively discarding blocks read from the disk.

Consider this simple example.

[…]
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Adaptive exclusive caching

Data

“Ghost”
LRU caches

Real LRU cache
Array

Demoted block

Read block

Data
Metadata

Metadata

To determine how long to save read blocks in the array cache, we developed an 
adaptive extension to our exclusive caching scheme. Our extension simulates the 
effect of caching only read or demoted blocks at the array, by using ghost caches.

Here’s how ghost caches work. Suppose that we have read a block from disk. We 
first take the block metadata and cache it in an LRU-style ghost cache that 
simulates what would happen if we only cached read blocks. Then, we insert the 
actual block data into the real array cache at a position determined by a score value 
I’ll introduce soon.

We treat demoted blocks in a similar manner.

Once we insert a block into the real cache, it is moved around just as in a standard 
LRU cache: if a subsequent block request hits in the cache, we move the block to 
the tail. When the block reaches the head, we discard it.
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Adaptive caching: Receiving requests

Hit?

“Ghost”
LRU caches

Real LRU cache
Array

Read request
Hit?

?

Now, when we receive a read request at the array, we first check to see if the 
request hits in our ghost caches, and update the LRU queues and hit counts as 
appropriate: in other words, we see if we would have gotten a hit if we had cached 
only blocks of one type.

We then see if the request hits in the real cache.
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Insertions with scores

• Read block insertion:
• Score = read ghost hits / sum of ghost hits
• 0 → real cache head, 1 → real cache tail

• Demoted block insertion: similar to read

Need to make insertions fast

We use the relative hit counts of the ghost caches to compute a score. The score is 
then used to determine where to insert a block into the real cache.

As an example, consider the insertion of a block read from the disk. We compute 
the score by dividing the read ghost hit count by the sum of all ghost hit counts.

We then insert the read block into the real cache. A score of 0 means that read 
blocks are not useful, and we insert the block at the head of the real cache. A score 
of 1 means that read blocks are incredibly useful, and we insert the block at the tail.

The insertion of a demoted block is similar to a read, except that we use the 
demoted ghost hit count instead.

Locating the exact insertion position for a block can be time-consuming. We need a 
mechanism to make insertions fast.
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Fast insertions with segments
1.0 0.8 0.6 0.20.4 0.0

0.9 0.20.5

Array LRU; uniform

Blocks

1.0 0.8 0.6 0.0

Array LRU; exponential

0.9 0.5 0.2 Blocks

To make insertions fast, we divide the cache into segments, and assign a maximum 
score to each segment.

Then, when computing the score for a block to insert, we round up to the nearest 
maximum segment score.Thus, a block with a 0.9 score goes to the tail of the 1.0 
segment. A block with a 0.5 score goes into tail of the 0.6 segment, and a block 
with a 0.2 score goes into, well, the 0.2 segment.

We may decide to weight segment sizes to reward high scores and penalize low 
scores. We experimented with an exponential weighting, in which each segment 
was twice the size of the previous segment, with the largest segment at the tail.
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Multi-client workloads

• Disjoint:
• DB2 (8 hosts): As before
• OPENMAIL (6 hosts): Mail server farm

• Shared:
• HTTPD (7 hosts): As before

• Simulated in fscachesim
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Multi-client schemes

• INCLUSIVE
• Baseline

• DEMOTE

• DEMOTE-ADAPT-EXP
• Adaptive caching, exponential segments
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Multi-client results: DB2

DEMOTE for disjoint workloads:
• Keep demoted blocks
• Eject disk-read blocks
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On this graph, we show the per-client request latency. Lower is better. Red is the 
baseline, blue and green are DEMOTE and DEMOTE-ADAPT-EXP respectively.

Since DB2 is disjoint, read blocks are never reused, so the array should discard 
them immediately.

Thus, for the most part, all of the clients get speedups out of DEMOTE, which 
discards read blocks immediately.

Clients get smaller speedups out of DEMOTE-ADAPT-EXP, which wastes array 
cache space by keeping read blocks around for a little while. Perhaps, with a longer 
trace, the array would learn to discard read blocks immediately.

A blip: client 2 has a small working set that mostly fits in the client cache alone. 
Thus, demoting blocks is pointless.
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Multi-client results: OPENMAIL

Again, DEMOTE for disjoint workloads:
• Keep demoted blocks
• Eject disk-read blocks
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OPENMAIL shows the similar results to DB2, again confirming that the array 
should immediately discard read blocks for disjoint workloads.
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Multi-client results: HTTPD

DEMOTE-ADAPT-EXP for shared workloads:
• Keep both demoted and disk-read blocks
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HTTPD shows the opposite behavior from DB2 and OPENMAIL. DEMOTE 
discards shared blocks before other clients have the chance to request them, which 
causes those request to go to disk.

DEMOTE-ADAPT-EXP keeps those read blocks around, thus letting other clients 
get at them.

A blip: client 7 had a smaller working set than the others.
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Multi-client summary

Eject read blocks for disjoint workloads
(DB2, OPENMAIL)
Keep some read blocks for shared workloads 
(HTTPD)
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HTTPD

DEMOTE DEM-ADAPT-EXP

1.3

1.2

1.5

Workload

1.2 0.9
0.6

Mean per-client speedup



30

Theodore Wong    USENIX 200230

Related work
• Inclusive caching

[Muntz1992, Froese1996]

• Global memory management:
• Database system cache management

[Franklin1992]
• Peer-to-peer cooperative caching

[Dahlin1994, Feeley1995]

• Per-workload cache management policies

Long history of cache research going back over thirty years. These are the 
highlights that are most relevant to our work.

Muntz1992 identified the problem of inclusive caching in his “trash” paper. 
Froese1996 et al also looked at inclusive caching, and suggested different cache 
management policies to cope with this. No demotions, though.

Several research groups have looked at cooperative caching for databases and file 
systems. Franklin et al built a system for global memory management where a 
central server keeps a directory of blocks in the global (client and array) memory 
space, and redirected requests to whoever held the block. Peer-to-peer cooperative 
caching work has looked at removing the central server, and maintaining the 
directory in a distributed fashion. Our solution requires no central directory, and in 
fact makes fewer assumptions about the capabilities of the clients.

And of course, several research groups (too many to enumerate here) have looked 
changing cache management policies at the clients and array on to match the 
expected workload – but with no additional communication between clients and 
array. Our protocol is another type of policy, but with a simple additional operation 
to exchange some explicit information between them.
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Conclusions

• Exclusive caching beats inclusive

• Simple demote op yields big speedups

“My cache OR your cache?”
–Wong and Wilkes

In conclusion, storage systems should never be afraid to ask, “my cache or yours?”.
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More information

• My research page:
• http://www.cs.cmu.edu/~tmwong/research/

• HPL Storage Systems Program:
• http://www.hpl.hp.com/SSP/


