
1

My cache or yours?
Making storage more exclusive

Theodore Wong (Carnegie Mellon University)
John Wilkes (HP Labs)

USENIX 2002

2

Theodore Wong USENIX 20022

Typical storage system

TB disk storage

…

Clients: MB file system caches

…

Array:
GB block cache

Gbit/s network

Let’s begin by considering a typical storage system.

At the top, you have front-end clients, which typically have hundreds of megabytes
of file system cache RAM.

At the bottom, you have a back-end storage array, which has gigabytes of cache
RAM.

The array sits in front of a disk farm with terabytes of long-term storage.

Finally, you have a fast network connecting the clients to the array. The network
latency is orders of magnitude lower than the disk latency, to the point where you
can think of the array cache as being a low-cost extension of the client caches.

(Cache sizes have increased since we began our study, but the relative sizes of the
client and array are about right.)

Now, you might expect that the total effective cache is equal to the aggregate of the
client and array caches. Unfortunately, that is usually not the case.

3

Theodore Wong USENIX 20023

Motivation

• Array cache is inclusive
• Blocks duplicated in the client and array

• We make the array cache exclusive
• Blocks either at the client or array

“Your cache ain’t nuthin’ but trash.”
–Muntz and Honeyman

As Muntz and Honeyman observed, “your cache ain’t nuthin’ but trash!”.

The problem is that the array cache is typically inclusive, which means that much of
its contents duplicates that of the clients.

Inclusive caching reduces the effective size of the aggregate cache, which is
wasteful since array cache isn’t cheap.

Inclusive caching hurts performance, since more clients requests may go out to the
disk than is necessary.

What we have done is design and evaluate schemes that make the array cache
exclusive, which means that its contents is distinct from that of the client.

4

Theodore Wong USENIX 20024

Client LRU

Typical inclusive caching

Array
read

Client
read

Array LRU

Discard

Discard

Client
request

Blocks cached in two places: wasteful!

Let’s simplify the previous picture a bit, by ignoring inter-client sharing, and taking
all of the client caches and thinking of them as a single, large cache.

Even thought each individual client cache is smaller than the array cache, in
aggregate the client cache may be about as large as the array cache.

The boxes on the right are simply LRU caches: we put data blocks in at the tail, and
eject them from the head.

Now, consider what happens when the client issues a request for a block that isn’t in
any of the caches.

First, the array reads the block off of a disk, and puts it into its cache.

Then, the client reads the block out of the array, and puts in into its cache.

Now, the block will be duplicated in both caches until the client issues enough
requests to push the block out of one of the caches.

This duplication is wasteful: if the client doesn’t have a block in its cache, the array
is likely not to have it either. If the client does have the block, it doesn’t matter if
the array has it or not.

5

Theodore Wong USENIX 20025

Array LRU

Client LRU

Exclusive caching

Discard

Client
request

Client
read “Demote”

Blocks cached in only one place

Let’s return to our abstract storage system.

Again, consider what happens when the client issues a request for a block that isn’t
in any of the caches.

Now, the client reads the block straight to the tail of its cache, basically bypassing
the array.

The array cache only acts as a buffer between the disk and the network. We’ll come
back to this point later.

When the block reaches the head of the client cache, the client uses a new demote
operation to transfer the block to the tail of the array cache. The array discards the
block when it reaches the head of its cache.

Excellent. We have stopped the duplication of blocks, and made the array cache
into an extension of the client cache.

6

Theodore Wong USENIX 20026

Outline

• Single-client evaluation

• Multi-client evaluation

• Conclusions

For the rest of this talk, I’ll present results of evaluations of our exclusive caching
scheme using both simple and complex models of storage hierarchies.

I’ll first present the results of simple experiments that use our abstract, single-client
model.

Then, I’ll present the results of experiments with multiple clients and realistic
workloads.

7

Theodore Wong USENIX 20027

Single-client evaluation
• Verify that exclusive caching works

• Study caching schemes in simple systems:
• Single client cache, equal in size to array cache
• Read-only workloads

• Analyze sensitivity to:
• Reduced bandwidth
• Larger and smaller array cache sizes

The primary goal of the single-client evaluation is to confirm that our reasoning
about exclusive caching schemes is sound, and that we have the potential to obtain
useful performance improvements.

To simplify reasoning about cache behavior, we consider the behavior of schemes
in the abstract system with a single large client cache, equal in size to the array
cache.

We consider read-only workloads throughout this study. For many workloads, write
requests only form a small fraction of all requests. Also, the type of arrays we are
modeling generally have a separate, non-volatile write cache.

Since our design relies on the existence of a high-bandwidth, low-latency network
connecting the client and the array, we analyzed how our exclusive scheme
performed under reduced bandwidth.

We also analyzed how our scheme performed when the array cache was larger or
smaller than the client cache.

8

Theodore Wong USENIX 20028

Predicting benefits: Random

0
0

H
it

ra
te

Cache size

Inclusive
Exclusive

In
cr

ea
se

We can estimate the benefit of switching from an inclusive to an exclusive cache
scheme by looking at the graphs of the hit rate vs. cache size for each workload.

This graph represents the hit rate for a random workload, in which hit rate rises
linearly with cache size.

For the abstract single-client setup, we expect that an array with an inclusive
scheme will contain the same data as the client, and all requests that miss at the
client will also miss in the array.

This red line here show the hit rate in the client.

Conversely, we expect an array with an exclusive scheme to contain different data
than the client. We just sum up their cache sizes to find the cumulative hit rate.

Since the first set of requests hit in the client, the remaining requests must hit in the
array. This marker bar here represents the increase in the overall hit rate due to hits
in the array.

9

Theodore Wong USENIX 20029

Predicting benefits: Zipf-like

0
0

H
it

ra
te

Cache size

Inclusive
Exclusive

In
cr

ea
se

We can perform a similar analysis for Zipf-like workloads, in which the probability
of accessing block i is proportional to 1/i. We see this kind of access pattern in file
and web server systems.

We see that there’s still an improvement with exclusive caching schemes, but the
benefit is smaller since most requests already hit in the client.

10

Theodore Wong USENIX 200210

Single-client workloads: Synthetic

• RANDOM (e.g., transaction processing)
• ZIPF (e.g., web server; file server)

• Simulated in Pantheon

For our initial single-client experiments, we constructed a set of synthetic
workloads that we predicted should perform poorly with inclusive schemes, but
quite well with exclusive schemes. Again, I stress that we did this to ensure the
sanity of our design and theoretical understanding.

We used two synthetic workloads that roughly model real workloads: RANDOM,
which is similar to transaction-processing workloads, and ZIPF, which models Unix
file server and web server access patterns.

We simulated our caching schemes in Pantheon, a detailed array simulator from HP
that models just about everything about in a disk array, including accurate disk
timing and network controller overheads.

11

Theodore Wong USENIX 200211

Single-client schemes

• INCLUSIVE
• Baseline “typical” scheme

• DEMOTE
• Exclusive caching scheme

12

Theodore Wong USENIX 200212

Single-client results: Synthetic

Exclusive caching works

0
1
2
3
4
5
6

RANDOM ZIPF
Workload

M
ea

n
la

te
nc

y
(m

s) INCLUSIVE DEMOTE
64 MB client cache
64 MB array cache

1 Gbit/s network
10 ms disk latency

Our results show that our expectations about the DEMOTE caching scheme were
correct. We obtained impressive speedups for both synthetic workloads.

We report mean request latency as seen by the client. Lower is better. Blue bars are
us.

ZIPF shows an interesting result: with ZIPF, we would expect the client to hold the
most popular blocks, and request other blocks relatively infrequently. Even so, we
still obtain a noticeable speedup with the DEMOTE scheme.

13

Theodore Wong USENIX 200213

Sensitivity evaluation results: Network

Resilient to bandwidth variation

RANDOM

0
2
4
6
8

10
12
14
16

0.01 0.10 1.00 10.00
Bandwidth (Gbits/s)

M
ea

n
la

te
nc

y
(m

s) INCLUSIVE
DEMOTE

ZIPF

0

1

2

3

4

5

0.01 0.10 1.00 10.00
Bandwidth (Gbits/s)

M
ea

n
la

te
nc

y
(m

s) INCLUSIVE
DEMOTE

Having confirmed that our synthetic workloads obtained speedups from exclusive
caching, we go on to see how our exclusive scheme stacks up when we reduce the
available network bandwidth.

And we see that we do pretty well. Again, these graphs show mean request latency.
Lower is better. Blue is us.

Our scheme holds up well except for very low bandwidths. At the crossover point,
the extra network transfer cost of demotions outweighs any benefits obtained.

Better yet, the performance degradation is graceful. There are no cliffs.

14

Theodore Wong USENIX 200214

Single-client workloads: Real

• CELLO99: File server
• TPC-H: Database server benchmark
• DB2: Multi-client database workload
• HTTPD: Web server farm

• Simulated in fscachesim

Since our synthetic workloads obtained impressive speedups from exclusive
caching, we went on to see how more realistic workloads would fare. For each
workload, we used client and array cache sizes that were of the same magnitude as
the working set of the load.

CELLO99 is a month-long trace of a file server.

TPC-H is a portion of an audited run of the TPC-H transaction processing
benchmark.

DB2 is a trace of an eight-node parallel database system performing join, set, and
aggregation operations.

HTTPD is a one-hour trace of a seven-node parallel web server.

Since we were primarily concerned with cache behavior only, and since Pantheon
couldn’t simulate the larger caches required by these workloads, we used a simpler
cache simulator called Pantheon that omitted the detailed disk and network models.

15

Theodore Wong USENIX 200215

Single-client results: Real

0
1
2
3
4
5
6

CELLO99 TPC-H DB2 HTTPD
Workload

La
te

nc
y

(m
s)

INCLUSIVE DEMOTE
1 Gbit/s network

5 ms disk latency

Exclusive caching works for real loads

Our results demonstrate that our DEMOTE caching scheme provides benefits to
real-life workloads. We used faster disk models than those used in the synthetic
experiments, commensurate with those that existed in the original traced systems.

HTTPD shows an interesting result: even though the client contains most of the
working set, as evidenced by the low mean latency with the INCLUSIVE scheme,
switching to the DEMOTE scheme still yields a speedup.

16

Theodore Wong USENIX 200216

Sensitivity evaluation results: Cache size

Resilient to array cache size variation

TPC-H

0

1

2

3

4

5

6

1 10 100 1000
Array cache size (GB)

M
ea

n
la

te
nc

y
(m

s) INCLUSIVE

DEMOTE

32 GB client cache
1 Gbit/s network

5 ms disk latency

By now, you’re probably wondering what happens if our assumption about equal
client and array cache sizes is bogus.

Here, we show the effect of varying array cache size for TPC-H while keeping the
client cache size constant. Lower is better. Blue is us. The dotted line shows the
point where the client and array caches sizes are the same.

The answer is that our exclusive scheme still performs OK. We only start to get into
trouble when the array cache is an order of magnitude smaller than the client cache,
and of course we get no improvement if the working set fits in the client cache
alone.

17

Theodore Wong USENIX 200217

Single-client summary

Exclusive caching yields significant speedups
Resilient to bandwidth, cache size variation

Workload Speedup
CELLO99 1.3

TPC-H 1.1
DB2 1.4

HTTPD 2.2

Workload Speedup
RANDOM 7.5

ZIPF 1.7

Overall, we get up to a 7.5 times speedup with our DEMOTE exclusive caching
scheme for all of the single-client workloads.

Also, the benefits of exclusive caching are resilient to bandwidth and array cache
size variations.

18

Theodore Wong USENIX 200218

Multi-client evaluation

• Predict benefits for real systems
• Large array cache, smaller client caches

• Consider effects of inter-client sharing

• Define two types of workload:
• Disjoint workloads: No block sharing
• Shared workloads: Some block sharing

We now move on to multi-client evaluation. Having seen that realistic workloads
obtain speedups in the single-client case, we decided to evaluate the performance of
exclusive caching schemes in realistic system environments with multiple request
streams.

Multi-client systems have a new variable: the degree to which clients request the
same blocks from storage.

It helps to divide multi-client workloads into two families: disjoint workloads in
which client do not access any of the same blocks, and shared workloads in which
clients access some of the same blocks in the working set.

19

Theodore Wong USENIX 200219

Shared workloads and DEMOTE

Need to save “disk-read” blocks at array

Clients

Array LRU

Request 1

Request 3

Re-read! Request 2

For shared workloads, our DEMOTE protocol may actually hurt performance, by
overly aggressively discarding blocks read from the disk.

Consider this simple example.

[…]

20

Theodore Wong USENIX 200220

Adaptive exclusive caching

Data

“Ghost”
LRU caches

Real LRU cache
Array

Demoted block

Read block

Data
Metadata

Metadata

To determine how long to save read blocks in the array cache, we developed an
adaptive extension to our exclusive caching scheme. Our extension simulates the
effect of caching only read or demoted blocks at the array, by using ghost caches.

Here’s how ghost caches work. Suppose that we have read a block from disk. We
first take the block metadata and cache it in an LRU-style ghost cache that
simulates what would happen if we only cached read blocks. Then, we insert the
actual block data into the real array cache at a position determined by a score value
I’ll introduce soon.

We treat demoted blocks in a similar manner.

Once we insert a block into the real cache, it is moved around just as in a standard
LRU cache: if a subsequent block request hits in the cache, we move the block to
the tail. When the block reaches the head, we discard it.

21

Theodore Wong USENIX 200221

Adaptive caching: Receiving requests

Hit?

“Ghost”
LRU caches

Real LRU cache
Array

Read request
Hit?

?

Now, when we receive a read request at the array, we first check to see if the
request hits in our ghost caches, and update the LRU queues and hit counts as
appropriate: in other words, we see if we would have gotten a hit if we had cached
only blocks of one type.

We then see if the request hits in the real cache.

22

Theodore Wong USENIX 200222

Insertions with scores

• Read block insertion:
• Score = read ghost hits / sum of ghost hits
• 0 → real cache head, 1 → real cache tail

• Demoted block insertion: similar to read

Need to make insertions fast

We use the relative hit counts of the ghost caches to compute a score. The score is
then used to determine where to insert a block into the real cache.

As an example, consider the insertion of a block read from the disk. We compute
the score by dividing the read ghost hit count by the sum of all ghost hit counts.

We then insert the read block into the real cache. A score of 0 means that read
blocks are not useful, and we insert the block at the head of the real cache. A score
of 1 means that read blocks are incredibly useful, and we insert the block at the tail.

The insertion of a demoted block is similar to a read, except that we use the
demoted ghost hit count instead.

Locating the exact insertion position for a block can be time-consuming. We need a
mechanism to make insertions fast.

23

Theodore Wong USENIX 200223

Fast insertions with segments
1.0 0.8 0.6 0.20.4 0.0

0.9 0.20.5

Array LRU; uniform

Blocks

1.0 0.8 0.6 0.0

Array LRU; exponential

0.9 0.5 0.2 Blocks

To make insertions fast, we divide the cache into segments, and assign a maximum
score to each segment.

Then, when computing the score for a block to insert, we round up to the nearest
maximum segment score.Thus, a block with a 0.9 score goes to the tail of the 1.0
segment. A block with a 0.5 score goes into tail of the 0.6 segment, and a block
with a 0.2 score goes into, well, the 0.2 segment.

We may decide to weight segment sizes to reward high scores and penalize low
scores. We experimented with an exponential weighting, in which each segment
was twice the size of the previous segment, with the largest segment at the tail.

24

Theodore Wong USENIX 200224

Multi-client workloads

• Disjoint:
• DB2 (8 hosts): As before
• OPENMAIL (6 hosts): Mail server farm

• Shared:
• HTTPD (7 hosts): As before

• Simulated in fscachesim

25

Theodore Wong USENIX 200225

Multi-client schemes

• INCLUSIVE
• Baseline

• DEMOTE

• DEMOTE-ADAPT-EXP
• Adaptive caching, exponential segments

26

Theodore Wong USENIX 200226

Multi-client results: DB2

DEMOTE for disjoint workloads:
• Keep demoted blocks
• Eject disk-read blocks

0
1
2
3
4
5
6

C1 C2 C3 C4 C5 C6 C7 C8

Client name

La
ten

cy
 (m

s)

INCLUSIVE DEMOTE DEMOTE-ADAPT-EXP

On this graph, we show the per-client request latency. Lower is better. Red is the
baseline, blue and green are DEMOTE and DEMOTE-ADAPT-EXP respectively.

Since DB2 is disjoint, read blocks are never reused, so the array should discard
them immediately.

Thus, for the most part, all of the clients get speedups out of DEMOTE, which
discards read blocks immediately.

Clients get smaller speedups out of DEMOTE-ADAPT-EXP, which wastes array
cache space by keeping read blocks around for a little while. Perhaps, with a longer
trace, the array would learn to discard read blocks immediately.

A blip: client 2 has a small working set that mostly fits in the client cache alone.
Thus, demoting blocks is pointless.

27

Theodore Wong USENIX 200227

Multi-client results: OPENMAIL

Again, DEMOTE for disjoint workloads:
• Keep demoted blocks
• Eject disk-read blocks

0

1

2

3

4

5

C1 C2 C3 C4 C5 C6

Client name

La
ten

cy
 (m

s)

INCLUSIVE DEMOTE DEMOTE-ADAPT-EXP

OPENMAIL shows the similar results to DB2, again confirming that the array
should immediately discard read blocks for disjoint workloads.

28

Theodore Wong USENIX 200228

Multi-client results: HTTPD

DEMOTE-ADAPT-EXP for shared workloads:
• Keep both demoted and disk-read blocks

0

1

2

C1 C2 C3 C4 C5 C6 C7

Client name

La
ten

cy
 (m

s)

INCLUSIVE DEMOTE DEMOTE-ADAPT-EXP

HTTPD shows the opposite behavior from DB2 and OPENMAIL. DEMOTE
discards shared blocks before other clients have the chance to request them, which
causes those request to go to disk.

DEMOTE-ADAPT-EXP keeps those read blocks around, thus letting other clients
get at them.

A blip: client 7 had a smaller working set than the others.

29

Theodore Wong USENIX 200229

Multi-client summary

Eject read blocks for disjoint workloads
(DB2, OPENMAIL)
Keep some read blocks for shared workloads
(HTTPD)

DB2
OPENMAIL

HTTPD

DEMOTE DEM-ADAPT-EXP

1.3

1.2

1.5

Workload

1.2 0.9
0.6

Mean per-client speedup

30

Theodore Wong USENIX 200230

Related work
• Inclusive caching

[Muntz1992, Froese1996]

• Global memory management:
• Database system cache management

[Franklin1992]
• Peer-to-peer cooperative caching

[Dahlin1994, Feeley1995]

• Per-workload cache management policies

Long history of cache research going back over thirty years. These are the
highlights that are most relevant to our work.

Muntz1992 identified the problem of inclusive caching in his “trash” paper.
Froese1996 et al also looked at inclusive caching, and suggested different cache
management policies to cope with this. No demotions, though.

Several research groups have looked at cooperative caching for databases and file
systems. Franklin et al built a system for global memory management where a
central server keeps a directory of blocks in the global (client and array) memory
space, and redirected requests to whoever held the block. Peer-to-peer cooperative
caching work has looked at removing the central server, and maintaining the
directory in a distributed fashion. Our solution requires no central directory, and in
fact makes fewer assumptions about the capabilities of the clients.

And of course, several research groups (too many to enumerate here) have looked
changing cache management policies at the clients and array on to match the
expected workload – but with no additional communication between clients and
array. Our protocol is another type of policy, but with a simple additional operation
to exchange some explicit information between them.

31

Theodore Wong USENIX 200231

Conclusions

• Exclusive caching beats inclusive

• Simple demote op yields big speedups

“My cache OR your cache?”
–Wong and Wilkes

In conclusion, storage systems should never be afraid to ask, “my cache or yours?”.

32

Theodore Wong USENIX 200232

More information

• My research page:
• http://www.cs.cmu.edu/~tmwong/research/

• HPL Storage Systems Program:
• http://www.hpl.hp.com/SSP/

