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This paper reports on the e�ects of using hardware

virtual memory assists in managing �le bu�er caches

in UNIX. A controlled experimental environment was

constructed from two systems whose only di�erence was

that one of them (XMF) used the virtual memory hard-

ware to assist �le bu�er cache search and retrieval. An

extensive series of performance characterizations was

used to study the e�ects of varying the bu�er cache

size (from 3Megabytes to 70MB); I/O transfer sizes

(from 4 bytes to 64KB); cache-resident and non-cache-

resident data; reads and writes; and a range of ap-

plication programs.

The results: small read/write transfers from the

cache (�1KB) were 50% faster under XMF, while

larger transfers (�8KB) were 20% faster. Retrieving

data from disk, the XMF improvement was 25% and

10% respectively, although open/close system calls

took slightly longer in XMF. Some individual programs

ran as much as 40% faster on XMF, while an applica-

tion benchmark suite showed a 7{15% improvement in

overall execution time. Perhaps surprisingly, XMF had

fewer translation lookaside bu�er misses.

1 Introduction

As processor speeds increase faster than disk access

times decline, larger �le bu�er caches are being used

to compensate for the performance di�erences between

main memory (primary storage) and �le backing store

(secondary storage). One e�ect is that the cost of ac-
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cess to the �le bu�er cache will have a greater impact

on overall system performance. The work described

here explores one mechanism for minimizing these ac-

cess costs: mapping �les into a processor's virtual ad-

dress space, and then using virtual memory hardware

assists (such as a Translation Lookaside Bu�er, or tlb)

to speed cache lookups.

The research was conducted by comparing two

otherwise-identical designs of a UNIX1 �le bu�er cache:

HP-UX and XMF. HP-UX, Hewlett-Packard's ver-

sion of UNIX, is internally a 4.2BSD2 derivative with a

�le system that utilizes a software-managed �le bu�er

cache. XMF, the Xylophone Mapped File system, was

derived from HP-UX by adding code to use the virtual

memory hardware to map �les into the kernel's virtual

address space, thereby generating a hardware-assisted

�le bu�er cache, which obviated referring to a �le's disk

map during accesses to data in the cache. To allow di-

rect comparison of the old and new bu�er management

schemes, XMF preserved the HP-UX I/O semantics ex-

actly (e.g. it used the traditional UNIX read/write

system-call interface).

This paper presents some of the results of the re-

search. Section 2 discusses related work in this �eld;

section 3 brie
y outlines the XMF design (more details

can be found in [Braunstein89]); section 4 reports the

experimental setup used; section 5 the results obtained

from taking \micro"measurements; section 6 the results

of running a set of \macro" benchmarks; and section 7

o�ers an analysis. Section 8 draws some conclusions

from the work. Appendix I provides more information

on the changes we made to HP-UX, and Appendix II

contains some statistical data.

2 Related work

There have been many studies on caching within

�le systems (e.g. [Swinehart79, Satyanarayanan85,

1UNIX is a registered trademark of AT&T Bell Laboratories.
2The 4.2BSD software is release 4.2 of the Berkeley Standard Dis-

tribution of UNIX, distributed by the University of California at

Berkeley.



Schroeder85, Cheriton87, Gi�ord88]), but these investi-

gations were not primarily concerned with quantitative

comparisons of �le bu�er cache access methods, or the

impact of large physical memories on their performance.

Giving more memory to a �le bu�er cache can boost sys-

tem performance, but it can also have negative e�ects:

[Feder84] reported that increasing the bu�er cache size

(and hence the number of cache blocks) sometimes re-

sulted in lower overall performance, because the cost

of �nding data in the cache increased as the cache got

larger.

Measurements reported in [Ousterhout85] showed

that using a delayed write strategy a 4mb UNIX �le

bu�er cache had an 86% hit rate, and a 16mb cache had

a 90% hit rate. Simulations of a 128mb �le bu�er cache

showed that in steady state only 30{40mb were used

over a three day period. A similar study at Hewlett-

Packard showed that a 60mb cache would have a 99%

hit rate [Holt87]. Thus, it would seem that in a com-

puter system with a very large �le bu�er cache, say

60mb, e�cient cache replacement strategies would be

less important than locating and retrieving cached �le

blocks quickly. One way of doing the latter is to map

�les into the virtual address space of the processor, and

use the virtual memory hardware to assist in their ac-

cess. Such mapped �le systems were originally known as

single level stores because they treated primary memory

and backing store as a single entity.

The �rst use of a single level store was the Atlas sys-

tem [Kilburn62]. The next major system to use the

concept was Multics [Bensoussan72, Organick72]. Since

then, it has been used in several others (e.g. [Henry78,

Redell80, Leach83, Fitzgerald86, OQuin86, Busch87,

Simpson87, Chang88, Nelson88, Ousterhout88, Teva-

nian87, Tevanian88]). The work reported here di�ers

from these other endeavors by concentrating on isolat-

ing and measuring the e�ects of just one design deci-

sion, rather than including mapped-�le techniques in a

system that also altered many other design parameters.

XMF speedup

cache disk

Small (�1kb) transfers 50% 25%

Large (�8kb) transfers 20% 10%

8kb-read bandwidth 15% {

Individual applications up to 30%

Benchmark suite 7{15%

XMF slowdown

open/create & close < 9%

VM daemon overheads < 0.3%

Table 1: Summary of results.

3 XMF

Since blocks in the �le bu�er cache are aligned on phys-

ical memory page boundaries, the software bu�er cache

lookup scheme can be replaced by the hardware's vir-

tual address translation mechanism. XMF uses this

technique to �nd data in its �le bu�er cache. We hy-

pothesized that this would provide a substantial per-

formance bene�t, particularly for small transfer sizes

where we expected that the cache lookup overhead

would dominate the cost of copying the data. Also, we

expected that software lookup schemes would be more

costly at large cache sizes.

XMF was explicitly designed for comparing the two

�le bu�er cache lookup strategies. It is built into an

existing HP-UX kernel, with the changes deliberately

limited to those areas of the operating system that ma-

nipulate the �le bu�er cache. For example, XMF's in-

ternal virtual memory objects are not exposed to user

applications, and XMF o�ers exactly the same system

calls and system call semantics as HP-UX. The total

amount of physical memory available for the �le bu�er

cache is the same in the two designs. In XMF, a portion

of its cache (typically 0.5mb) is statically allocated to

inodes and indirect blocks. The two systems use identi-

cal �le system structures on disk; they can both run o�

the same disk pack. The XMF page-replacement dae-

mon is separate from the HP-UX one, to minimize the

interactions between them, to limit the scope of changes

to the HP-UX kernel, and to allow the two daemons to

be optimized for di�erent use patterns. The end result

is a pair of systems that di�er in only one important

aspect: how they access and manage their �le bu�er

caches.

3.1 XMF implementation

XMF runs on Hewlett-Packard's Precision Architec-

ture (hp-pa [Mahon86]) machines. hp-pa is a risc-

like pipelined load/store architecture with 32 gen-

eral purpose registers, a single, global virtual address

space up to 264 bytes in size segmented into 232 byte

spaces, 2kb physical pages, an inverted page table, and

software-managed tlbs. The HP-UX implementation

for hp-pa is further described in [Clegg86].

XMF code sits between the HP-UX �le system-call

interfaces and the low-level I/O subsystem (Figure 1).

The old HP-UX code is retained to manage non-disk

�les (e.g. block special devices, pipes, network special

�les).

Disk �les in both HP-UX and XMF are described by

inodes, which provide a mapping between logical �le

block numbers and physical disk block addresses (Fig-

ure 2). Since �les can grow up to 232 bytes long, a tree

of inode indirect blocks may be needed to hold all the

disk addresses. In typical HP-UX �le systems, indirect

blocks start to be used once a �le grows beyond about
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90kb in size. Both XMF and HP-UX cache recently-

used blocks of �les in a �le bu�er cache, an array of

page-aligned physical memory slots.

The primary XMF design goal was to minimize the

read/write instruction paths. Figure 3 shows the rel-

ative complexity of the HP-UX and XMF call graphs

for a read system call.

In XMF, a Virtual Storage Object (vso) describes a

virtual memory object|a range of addresses that rep-

resents a single logical object and its access rights (Fig-

ure 4). At �le open time, a vso is created, and asso-

ciated with its disk storage by constructing a Mapping

Table Entry (mte). Each mte maps a contiguous vir-

tual address range onto (part of) a single Active Storage

Object (aso), an abstraction for the underlying storage

object that corresponds one-to-one with an HP-UX in-

ode. (For these experiments, each mte fully mapped a

single aso, and each �le was mapped into a separate 232

byte virtual space.) An mte can also re�ne the access

rights of its enclosing vso. The mte holds the infor-

mation needed to construct the architected hp-pa data

structures that describe the virtual to physical address

translation: an inverted page table (pdir) and its tlb

entries.

When the last open �le descriptor referring to a �le

is removed, the �le's vso is deleted, and the mte slots

are marked as free and added to a Least Recently Used

(lru) chain. If, as often happens, the �le is re-opened
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Figure 3: read call graphs for XMF (left) and HP-UX

(right).
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Figure 4: Virtual object management and physical memory

management structures in XMF.

quickly, the mte mappings can be reused; if not, any

dirty bu�er cache blocks associated with the mte are

written to disk before the mte is reallocated.

Paging within XMF occurs in two ways: read-

ing is performed on demand, while writing is done

asynchronously by a separate XMF daemon process.

XMF uses an lru-like clock algorithm [Corbato69,

Babao�glu81] to manage �le bu�er cache block replace-

ment, supports delayed writing and block read-ahead,

and clusters pages together during I/O to minimize var-

ious overheads. Together, these techniques emulate the

strategies used in HP-UX.

XMF was embedded in release 1.1 of the HP-UX sys-

tem. It adds 16 C-language source �les, 1 small as-

sembler �le, and 6 header �les to the HP-UX sources.

These �les contain approximately 3000 lines of code,

and increase the static size of the kernel by about 10%



(124kb).

3.2 I/O in XMF and HP-UX

This section describes the di�erences in the execution

of read calls between HP-UX and XMF. reads and

writes are identical except that a write may some-

times cause a �le to be extended, in which case a new

disk block has to be allocated and zero-�lled.

A read system call takes three arguments: a �le de-

scriptor; a pointer to a region of memory where the

result should be placed; and the number of bytes to

transfer. The �le descriptor indexes a process-local ta-

ble, to retrieve a pointer into the system-wide �le table

that describes all open �les. In each �le table entry is an

inode pointer and an o�set where the next read/write

operation will begin. reads and writes access sequen-

tial locations in the �le unless the �le o�set is explicitly

changed through seek or lseek system calls.

The di�erences between reads on XMF and HP-UX

happen during the translation from a �le o�set to a

location in the �le bu�er cache:

� For each read operation, HP-UX �rst translates

the �le o�set into a physical disk block number,

using the information in the inode and its indirect

blocks. It then uses this to index the �le bu�er

cache via a hash table. Physical block numbers are

used because the �le bu�er cache holds some data

(inode indirect blocks) that are not part of any �le

and so have no other address.

� XMF assigns a portion of the processor's virtual

address space to represent the �le when it is �rst

opened. The virtual address of the start of the �le

is stored in the system �le table. A �le's bu�er

cache address is simply this value plus the �le's

byte o�set. A simple data-copying loop performs

the I/O transfer, and the virtual memory hardware

handles protection and does the necessary address

translations:

{ If the virtual address is stored in the tlb, the

translation occurs during a single machine cy-

cle.

{ If the address is not in the hardware tlb, the

procesor takes a TLB fault trap. If a search

in the pdir data structure �nds a descrip-

tor for the relevant page, the tlb is reloaded

and the faulting instruction restarted. This is

analagous to an HP-UX cache lookup when all

the needed indirect blocks are in the �le bu�er

cache.

{ If the pdir search fails, it means that the re-

quired data are not in physical memory and a

page fault occurs. This is equivalent to HP-

UX �nding that the needed block is not in its

�le bu�er cache. The faulting virtual address

is hashed to locate the relevant vso, which

points to the mte, which in turn points to the

aso and hence the inode. The logical �le block

number is then calculated, and used to locate

the physical disk block through the inode and

indirect blocks in the usual way.

XMF keeps only �le data blocks in its �le bu�er

cache; the indirect blocks are stored in an area of

memory managed as a vestigial HP-UX �le bu�er

cache, addressed by physical disk block. This en-

sures compatibility with the HP-UX disk format.

The main bene�t of the XMF scheme is that �nd-

ing data that are already in the cache is much faster

than with a software search algorithm (especially if the

necessary translation is already in the tlb). In addi-

tion, there is no need for an inode indirect block to be in

memory for the data blocks it describes to be accessible.

3.3 Modi�cations to HP-UX

Preliminary measurements indicated that HP-UX per-

formed less well in certain circumstances than we had

anticipated. Further investigation showed a number

of places where the cache replacement policies or al-

gorithms used by HP-UX were inferior to those used

in XMF.3 Since our goal was to compare cache search

mechanisms, not bu�er management schemes, we mod-

i�ed HP-UX slightly to make its policies the same as

in XMF and re-ran the measurements. In all cases the

modi�ed version of HP-UX did better than the old one,

so the performance numbers from the new one are used

in what follows. Appendix 1 describes the changes in

more detail.

4 The experiments

Once the XMF implementation had been completed, at-

tention turned to testing the validity of our hypotheses.

Among the issues we investigated were:

� How well a hardware-assisted �le bu�er cache

scheme performed in comparison with a software

one.

� How changes in the �le bu�er cache size and ac-

cess time a�ected the performance of �le system

operations.

� How �le system e�ciency a�ected overall system

performance.

� How di�erent bu�er management strategies af-

fected the hardware processor caches and tlbs.

� How much overhead was added to open/close

system calls. (XMF builds up and tears down ad-

ditional tables during these calls.)

3Several of the HP-UX limitations we identi�ed have been lifted

in more recent releases.



The hardware used for the XMF experiments re-

ported in this paper was the HP 9000 Series 840 proces-

sor [Fotland87], the �rst released product in the hp-pa

family. It is constructed from TTL logic, operates at

a sustained rate of 4.5mips (peaking at 8mips), imple-

ments a 48-bit subset of the full hp-pa 64-bit address

space, and has a pair of 2048-entry direct-mapped tlbs:

one for data, the other for instructions.

One of the test systems had an HP 93562A hardware

coprocessor (the \Analyzer Card"), capable of monitor-

ing various hardware functions non-invasively. It was

used with XMF to measure the path length of various

�le system operations, and to collect hardware cache

and tlb access and miss counts.

Three utility programs were developed to exercise the

�le system operations: one for read, one for write,

and one for open/create and close. Each executed

many consecutive system calls, with parameters deter-

mined by a set of user-speci�ed options. Larger-scale

application benchmarks were used to determine overall

performance di�erences between XMF and HP-UX.

The testing procedure was designed to be highly re-

peatable: the benchmark programs were run under

identical circumstances without any operator interven-

tion. The system was rebooted between each bench-

mark run; no background daemons were present dur-

ing the tests. XMF and HP-UX have di�erent bu�er-


ushing mechanisms, and the init process periodically


ushes data to disk, so we disabled the sync system

call entry point. XMF and HP-UX tests were run al-

ternately using the same �le systems on the same disk

pack to minimize the e�ects of changes in disk layouts

between runs.

Most experiments were repeated several times. The

mean performance numbers are reported here. Aver-

aged over all the experiments, the data variability (the

standard deviation divided by the mean value) had a

mean value of 2.4% and a maximum of 11%. Appendix

II provides more information on the statistical proper-

ties of the measurements.

5 Micro performance results

This section summarizes the results obtained from

measuring \micro-level" performance parameters. It

presents instruction counts for reads from blocks in

the bu�er cache and on disk; read bandwidth; and

the relative costs of open, close, and create sys-

tem calls. Section 6 presents the results from running

\macro-level" application-level benchmarks.

5.1 Reading from the �le bu�er cache

read results were essentially identical to write results,

so only the latter are presented here. [Braunstein89]

includes both sets of data.

Small read/write transfers to and from the bu�er
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Figure 5: Instructions executed by 4 byte and 1024byte

read system calls.

cache are dominated by the system call overhead and

the cost of locating data in the bu�er cache, while copy-

ing costs dominate larger transfers.

Breakdowns of instruction executions during very

short (4 byte) and moderate-length (1kb) read calls

from cache-resident data are shown in Figure 5. (1kb

is the default block size used by the HP-UX stdio li-

brary.) The instruction count labelled \4 byte read" is

mostly the cost of searching the �le bu�er cache since

the data trsnsfer is so small. This is a substantial part

of the total for small read sizes (22% for XMF, 61% for

HP-UX). All the other costs are identical between the

two systems: the system call (itself 50% of the total for

XMF, 25% for HP-UX); the \generic read" code; and

the di�erence between the 4byte and 1024byte transfer

sizes, which is the cost of copying the extra data into

the user process.

Figure 6 shows how the request size a�ects the total

cost of a read: byte copying only becomes a domi-

nant component above about 2kb transfer sizes.4 Fig-

ure 6 might suggest that XMF only performs signi�-

cantly better at small transfer sizes. However, a plot

of the ratio of the XMF and HP-UX instruction counts

(Figure 7) shows that XMF o�ers signi�cant advantage

at all transfer sizes. The XMF advantage is smallest at

the �le bu�er cache block size (8kb for this system) be-

cause HP-UX does the smallest number of cache block

lookups per transfer here. Even so, XMF is still 20%

faster. At larger transfer sizes HP-UX has to perform

a lookup for each block because individual blocks are

scattered through the �le bu�er cache, whereas XMF

�le bu�er cache blocks are located in sequential virtual

memory locations so that �nding the next block's vir-

4Note that this graph and several others have logarithmic axes.
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calls; cache-resident data.

tual address is easy.

Figure 8 shows the e�ect on read bandwidth of vary-

ing the �le bu�er cache size. The test employed 8kb

reads of a 1.5mb �le known to be in the �le bu�er

cache, and the results demonstrate both higher and

more consistent bandwidth on XMF as the �le bu�er

cache size is changed. As expected, the bandwidth

does not depend signi�cantly on the bu�er cache size for

XMF (the standard deviations are 0.07 for XMF, 0.09

for HP-UX). The high variance in the HP-UX times is
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Figure 8: Read bandwidth against �le bu�er cache size.

100000100001000100101
1

10

100

1000

XMF
HP-UX

Bytes read

In
st

ru
ct

io
n

s 
ex

ec
u

te
d

 (
th

o
u

sa
n

d
s)

Figure 9: Instruction counts for reading disk-resident data.

discussed further in section 6.2.

5.2 Reading from disk

When the information being requested is not in the

�le bu�er cache, the majority of the time to service

a read request is spent retrieving the data from disk.

The read operation searches the �le bu�er cache for

the block, doesn't �nd it, allocates a new bu�er, brings

the block in from the disk, �nds the new block (again),

and then copies the data to the user process. Figure 9

shows the e�ect of this on the total instruction count

for read calls. As expected, the I/O subsystem costs
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Figure 10: Relative costs of XMF and HP-UX read sys-

tem calls; disk-resident data.

dominate for small transfers: the absolute number of

instructions executed is about �ve times greater than

when the disk driver is not called. Despite this, copy-

ing costs still dominate for transfers larger than about

4kb. (The test was constructed in such a way that the

read-ahead algorithm was only activated at 8kb and

larger transfer sizes.)

The ratio of the XMF and HP-UX performances is

shown in Figure 10. As before, XMF does better for

small read sizes, because both operating systems do

a lookup to �nd that the necessary data block is not

in the �le bu�er cache. A second lookup is also per-

formed after the block is brought in. XMF performs

both lookups faster than HP-UX, although the bene�t

is proportionally less because of the additional costs of

the I/O subsystem.

Figure 11 summarizes several of the preceding �gures

by displaying the relative bene�ts o�ered by the caches

in XMF and HP-UX. The cache advantage is de�ned

as the cost of a cache miss (data retrieved from disk)

divided by the cost of a cache hit (data already in the

�le bu�er cache). The larger the cache advantage, the

more bene�cial a cache is at a given hit rate.

5.3 open/close performance

In order to support the new read and write opera-

tions, XMF's open, create 5 and close calls have to

manage additional tables. To assess the cost of this,

we measured the instruction path lengths for opens,

creates, and closes. There were three scenarios:

5The HP-UX create system call is just a special case of open that

truncates the �le if it already exists. The system call is actually

named creat, of course.
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Figure 11: Cache advantages of XMF and HP-UX during

read system calls.

1. open: a �le is opened multiple times, so that the

�le's inode is already in the inode table and does

not need to be paged from the disk.

2. \create existing": the same �le is re-created

(opened and truncated to zero length) multiple

times, reusing the existing inode and other XMF

tables.

3. \create new": a new �le name is chosen to force

a �le to be created from scratch with a newly-

allocated inode.

The results are displayed in Figure 12. \create new"

shows the e�ect of the XMF table management costs

most clearly because XMF always has to build new en-

tries in its three internal tables. \create existing" is

similar to open; both calls can often take advantage

of XMF's caching of recently-used internal table entries

after a �le is closed, which reduces the extra cost to only

5%. In all three cases additional work is required to set

up the virtual memory hardware information such as

protection attributes.

6 Application performance

Micro benchmarks do not tell the whole story: an im-

portant concern is the overall e�ect XMF has on \real"

system use. This section describes the results of testing

XMF against a diverse group of HP-UX application pro-

grams assembled to provide a workload approximating

real-world conditions. Each application was a standard

part of the local development environment; the only se-

lection criterion was that the program make some use of
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�les.

the �le system. The applications were exercised using

data or scripts also extracted from the local develop-

ment environment. We believe that these examples are

representative of more general classes of applications.

This section discusses the e�ects on these benchmarks

of varying the �le bu�er cache size, XMF's impact on

the tlb, and background paging activity.

The following applications were used to put together

our \representative" workload. Each is followed by its

approximate running time on an HP-UX system with a

10mb �le bu�er cache:

1. HP-UX dependencies: build the source code depen-

dencies for the HP-UX kernel make�le (6:48 min-

utes; open/close-intensive).

2. di�: compare two identical 1.5mb �les (14 seconds;

cpu-intensive).

3. latex: format a 9 page document from a 25kb

source �le (42 seconds; many small reads).

4. sort: sort a 1.5mb �le using an I/O-intensive tape-

sort algorithm (12 seconds).

5. Compile HP-UX: generate an optimized HP-UX

kernel (1:14 hours; cpu-intensive, open/close-

intensive).

6. Large-system build: compile a very large Pascal-

based software system with 18.5mb of source �les

and 50mb of included �les (20.6 hours; two threads

running in parallel, cpu-intensive).

A summary benchmark was assembled using the �rst

four of these, the micro benchmarks described above,
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Figure 13: Distribution of �le operations in the benchmark

suite.

and some data analysis scripts used to examine the lat-

ter's output. The summary benchmark contained many

executions of each application or micro benchmark; de-

pending on the operating system and bu�er cache size,

it took between 98 and 123 minutes to run. Figure 13

shows the dynamic distribution of �le system operations

emitted during one of these benchmark runs.

6.1 E�ects of �le bu�er cache size

The machine available for testing had 96mb of physi-

cal memory. By con�guring di�erent HP-UX and XMF

kernels, the e�ects of �le bu�er cache sizes of between

3mb and 70mb were investigated. In all cases, su�-

cient user process memory was available that paging

and swapping activities were minimal, and constant

across con�gurations.

Figure 14 shows the running time of the summary

benchmark at several di�erent �le bu�er cache sizes. In

all cases XMF did better than HP-UX. User cpu time

was 17.6 minutes on both systems, with a variability of

0.3%. System time was 34.3 minutes (variability 1.2%)

for XMF, 42.6 minutes (1.3%) for HP-UX. Although

the XMF system time does not include the cost of the

background XMF virtual memory clock daemon, this

cost was close to zero at cache sizes beyond 50mb be-

cause the daemon never needed to run (section 6.3).

Increasing the �le bu�er cache size beyond about 8mb

for XMF (20mb for HP-UX) had little e�ect on the

elapsed time. The two curves of Figure 14 do not have

knees at identical points, which suggests that we were

not entirely succcessful in making the two cache replace-

ment policies identical. Although this does not invali-

date our primary hypotheses (XMF shows an 8.3% per-

formance improvement at large cache sizes, beyond the
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Figure 14: Summary benchmark execution times by �le

bu�er cache size.

knees in both curves), it did cause us to investigate the

behavior further. It turns out that HP-UX does less

well at smaller cache sizes because it writes unnecessar-

ily many dirty blocks to disk when searching for a block

to evict from the bu�er cache. XMF does not exhibit

this e�ect because its clock algorithm maintains a pool

of free blocks by reclaiming just the blocks it needs.

More information on this is presented in Appendix I.

We were not able to construct a meaningful bench-

mark that signi�cantly stressed very large (� 30MB)

bu�er caches, so our original hypothesis that the XMF

technique would scale better to this regime remains un-

substantiated. (Incidentally, this supports the observa-

tions of [Ousterhout85].) Even the large Pascal com-

pilation benchmark shows no cache-size related e�ects,

despite its 69mb of �les|perhaps because the Pascal

compiler with optimization turned on is computation-

ally intensive (user mode cpu time accounted for 83%

of the total time). For all cache sizes between 6 and

40mb, the benchmark took 20.6 hours to execute on

HP-UX, 19.1 hours on XMF|a savings of about 7%.

6.2 E�ects on the translation lookaside bu�er

We initially hypothesized that XMF would decrease

the e�ectiveness of the hardware virtual memory as-

sist structures (e.g. the tlb) because it would be ac-

tively using a larger virtual address space. To investi-

gate whether this was correct, the Analyzer Card was

used to measure data tlb accesses and misses during

several benchmark runs. In the �rst test, the HP-UX

sort utility was used to sort a 1.5mb �le. HP-UX aver-

aged some 14%more tlb accesses than XMF to perform

the same amount of useful work, so one would expect
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Figure 15: tlb misses: sort benchmark.
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Figure 16: tlb misses: HP-UX dependencies benchmark.

HP-UX to have about 14% more tlb misses than XMF.

However, as shown in Figure 15, the number of HP-UX

tlb misses varied greatly while the XMF miss counts

were fairly constant.

A similar pattern was seen while building the HP-UX

dependency list (Figure 16). In this case the number of

tlb accesses di�ers between HP-UX and XMF by less

than 1%, but as before, the numbers of tlbmisses di�er

by more than this.

Three other experiments repeatably showed similar

results: the mean variability was less than 2% for

XMF and less than 6% for HP-UX. These di�erences



in miss rates can have signi�cant e�ects: for the read-

bandwidth benchmark (Figure 8), the mean di�erence

between the number of tlbmisses for XMF and HP-UX

accounts for roughly 32ms of execution time|about

5% of the elapsed execution time, or 0.14mb/s of band-

width.

We conjecture that the greater tlb miss counts

shown by HP-UX and their higher variances result from

three main factors:

1. XMF instruction counts were consistently lower

than those for HP-UX, so a similar tlb miss rate

would produce fewer tlb misses.

2. The hardware tlb hashing algorithms use some

of the high-order address bits, which varied a lot

between �les for XMF but not much for HP-UX,

thereby increasing the relative likelihood of colli-

sions for the latter|e�ectively, XMF was \spread-

ing out" its references over a larger hash input do-

main than HP-UX.

3. The contiguous virtual address accesses by XMF

for a single �le minimized collisions on consecu-

tive reads and writes because the hardware tlb

hash algorithm incorporates the low-order bits of

the page number.

An experiment to con�rm or repudiate these conjectures

could be constructed by analysing a trace of all the tlb

misses during a benchmark run, and then looking for

collisions caused by consecutive accesses, \hot spots"

in application or kernel data structures, or the bu�er

cache itself.

6.3 Background process overheads

The overhead incurred by the XMF background virtual

memory daemon was measured by running a processor-

intensive benchmark that did no �le system I/O (dhry-

stone). Tests were performed with and without the

background virtual memory daemon enabled, although

in both cases XMF ran various load calculations 100

times per second. The overhead was quite small: less

than 0.3% (the variability of the data).

The amount of physical disk I/O (paging) done by

XMF during an early version of the summary bench-

mark runs is shown in Figure 17. The pageout count

reaches a �xed minimum because the benchmark suite

explicitly 
ushes several �les to disk. The miss rates

for the �le bu�er cache (the number of disk IOs divided

by the number of read and write system calls) were

as follows (the high values for HP-UX at 6mb are dis-

cussed further in Appendix I):

XMF HP-UX

6mb 70mb 6mb 70mb

reads 8.8% 8.6% 9.3% 8.6%

writes 2.1% 2.0% 5.2% 2.1%

both 4.4% 4.3% 6.6% 4.3%
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Figure 17: Paging statistics for XMF.
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Figure 18: XMF virtual memory daemon activity during a

summary benchmark run.

Other data indicate that the read-ahead algorithm

only retrieved 5 more blocks from disk than were used

for data transfers, con�rming that the simple algorithm

used performs very well.

Figure 18 shows the activities performed by the back-

ground XMF clock daemon over a range of �le bu�er

cache sizes. We did not devise a convincing mechanism

to determine how much time the daemon spent doing

this work.
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7 Analysis

Improving various HP-UX algorithms lead to a 10{17%

improvement in overall HP-UX performance. Even with

all these changes, XMF outperformed the resulting HP-

UX system. The following summary of the data re
ects

the results of comparing XMF to the improved HP-UX:

� Small reads and writes (�1kb) under XMF ex-

ecute about 50% fewer instructions than HP-UX

when the data are in the �le bu�er cache, and

about 25% fewer when the data are on the disk.

� Large reads and writes (�8kb) under XMF ex-

ecute about 20% fewer instructions than HP-UX

when the data are in the �le bu�er cache, and

about 10% fewer when the data are on the disk.

� For many applications, the time spent in system

mode under XMF is about 50% of that of HP-UX.

Since the system mode time for our benchmarks

represented about 15{30% of the total time, the

overall improvement was about 7{15%.

� open/create and close calls are slightly slower

under XMF than HP-UX. This seems to have lit-

tle e�ect on overall system performance unless the

benchmark accesses a lot of very small �les.

� XMF performs much better than HP-UX for �le

bu�er cache sizes less than 10mb. This is true for

all of the HP-UX versions, but it is especially true

for the unmodi�ed HP-UX.

� XMF causes fewer data tlb faults than HP-UX.

The likely bene�ts from running an application on XMF

rather than HP-UX can be accounted for by a reason-

ably simple model that characterizes the application's

behavior along the following axes:

� The amount of �le-system activity. For the �le-

system-intensive applications used as benchmarks

in this work, the XMF bene�t is roughly propor-

tional to the amount of time they spend in system

mode (�gure 19), although this will not be true of

arbitrary applications.

� The I/O transfer sizes. The smaller the transfers,

the greater the XMF advantage.

� The ratio of read and write system calls to open

and close calls. The latter are more expensive in

XMF:

{ the summary benchmark has a 33:1 ratio|

XMF showed an improvement of 8.3% at large

bu�er cache sizes (98.5 minutes versus 107.4

minutes);

{ the HP-UX dependencies benchmark has a

4.4:1 ratio|XMF displayed no overall advan-

tage (the benchmark takes a mean of 400 sec-

onds on both systems).

Other parameters are essentially independent of the sys-

tem used. For example, the relative performance of

reads and writes did not change signi�cantly in XMF

by comparison to HP-UX. Finally, performance is in
u-

enced by the amount of data used by the application.

For example, all the data accessed by the latex bench-

mark �tted into the bu�er cache, so its running time

was independent of the bu�er cache size.

8 Conclusions

This paper has presented a characterization of two

methods of accessing data in a �le bu�er cache under a

variety of memory con�gurations and application mixes.

The methodology used was to propose a set of hy-

potheses and then conduct controlled experiments to

test them, using two otherwise-identical systems, so

that conclusions could be drawn directly from the data.

Despite careful preparation and execution, we were re-

peatedly surprised by subtle but important e�ects we

had not controlled for. A number of iterations of mea-

surement and implementation were required to elimi-

nate or understand these e�ects.

Almost all of the initial hypotheses proved correct,

with two exceptions: the better scaling of XMF to very

large bu�er caches is still undecided, and tlb-related

overheads were less on XMF than on HP-UX. Virtual

memory hardware assists for managing �le caches do

o�er signi�cant performance advantages in almost every

case we measured.



We believe that our results are more widely applicable

than the deliberately narrow focus of this study might

at �rst suggest.

For example, we feel that this work demonstrates

the merits of using application-speci�c information

(e.g. that read-ahead is a bene�cial strategy for �le

data) in conjunction with a general mechanism (virtual

memory management).

The XMF design is a particular example of searching

system data structures by associative lookup. Hardware

to help with this is commonly available in the form of

processor virtual memory assists, such as tlbs. In our

experience, it was quite easy to take advantage of it.

Compared with HP-UX, XMF is virtually untuned,

yet it performs at least as well|sometimes much bet-

ter. XMF has simple, straightforward mechanisms that

allow it to do the common operations well. These also

eased changing it in the course of experimentation. The

complexity of the HP-UX implementation made such

exercises hazardous, and increased the di�culty of un-

derstanding its behavior.

In summary, the use of hardware virtual assists for �le

bu�er cache lookup in XMF resulted in a straightfor-

ward, simple implementation that performed at least as

well as|and often better than|our improved HP-UX,

and much better than the original version.

Appendix I: changes to HP-UX

The �rst portion of this appendix describes the changes

we made to HP-UX's management of its bu�er cache;

they may prove useful for other 4.2BSD-based systems.

The second elaborates on the discrepancy in the knees

of the performance curves in Figure 14.

Improvements to the bu�er cache algorithms

We found three problem areas that prevented HP-UX

from performing as well as XMF:

� The division of �le bu�ers between two internal

queues (the lru and age queues) caused long-lived

blocks (like inodes and indirect blocks) to �ll up

the lru queue. Only the age queue was used to

allocate new data blocks, so the cache behaved as if

it was much smaller than it really was. We merged

the two queues into a single structure with true

lru behavior, so each could take full advantage of

the available bu�er pool.

� The size of the hash table used to index the bu�er

cache was �xed at kernel compilation time at a very

small value (63 entries). The collision chains were

searched linearly, so performance decreased as the

number of bu�ers in the �le bu�er cache increased

(with a 70mb cache, the average chain was 220 en-

tries long). We changed the code to allocate and

size the hash table only after the number of �le
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Figure 20: Performance comparisons of di�erent HP-UX

versions.

bu�er cache entries was known, to make the aver-

age collision chain length about 0.5.

� When the last byte in a �le bu�er was written, the

�le system predicted that the block would not be

referenced again and forcibly 
ushed the bu�er to

disk. Applications that wrote data a full bu�er at a

time would pay a performance penalty, and short-

lived data (such as temporary �les) were likely to

be 
ushed unnecessarily to disk. We removed this

code and implemented a true delayed-write strat-

egy.

Figure 20 shows the performance of HP-UX variants

incorporating the changes described above (the test was

conducted with an early variant of the summary bench-

mark):

1. Unaltered HP-UX (\original").

2. Merged lru/age queues (\merged queues").

3. Merged lru/age queues and true delayed writes

(\delayed writes").

4. Merged lru/age queues, true delayed writes, and

the hash table size computed dynamically at boot

time (\dynamic hash").

In original HP-UX, the static hash table size caused an

increase in execution time for large �le bu�er caches

(about 4% between 3mb and 70mb). Merging the

lru/age queues allowed �le bu�er caches between 3mb

and 10mb to perform better under the tested workload.

Changing the �le bu�er cache to use a true delayed-

write algorithm increased overall performance by up to



14%. Overall, the three algorithm changes resulted in

improvements of 17% using a 3mb �le bu�er cache, 10%

using a 10mb �le bu�er cache, and 17% using �le bu�er

caches 20mb and greater.

Less than a dozen lines of code were changed to

achieve these bene�ts.

Cache replacement policies

The di�erence in the cache sizes for the knees of the

two curves in Figure 14 indicates that XMF is not sim-

ply doing cache lookups faster than HP-UX|it's do-

ing something else better as well. We �rst conjectured

that this could be explained simply by di�erent bu�er

residency times. If some blocks in HP-UX had longer

residencies than in XMF, the result would be a smaller

e�ective cache size for HP-UX. We identi�ed two pos-

sible mechanisms by which this could happen:

� inode and indirect blocks in HP-UX are treated as

part of the single bu�er cache (and have a high

likelihood of remaining in memory, so reducing the

e�ective bu�er cache size), while in XMF they are

con�ned to a separate portion of the cache and (in-

cidentally) accessed less frequently because of the

hardware assists;

� the XMF clock daemon only approximates HP-

UX's true lru algorithm (it does best at very small

and very large memory sizes).

A test for this hypothesis would be to log the cache

entry and exit times of each block, and then compare

the residency pro�les for the two systems. Such tests

would involve many modi�cations to the kernel sources,

which was something we were loath to do when this

behavior came to light. Instead, we ran an experiment

that logged all physical disk tra�c during runs of the

summary benchmark over a range of cache sizes.

The results are shown in Figure 21 (the e�ects of

the logging, swapping and paging tra�c have been sub-

tracted out). If the replacement policies were the same,

the curves for XMF and HP-UX would be identical.

Instead, as the bu�er cache size gets smaller, the num-

ber of disk writes issued by HP-UX climbs much faster

than for XMF, even though the number of disk reads

rises only slightly. For each extra disk read HP-UX does

compared with XMF, 12 times as many extra writes oc-

cur. The resulting knee in the total I/O curve is at a

similar point to the one for Figure 14.

Looking at the distribution of inter-arrival times of

the requests at the disk driver showed that the addi-

tional writes were coming in clumps of requests, each re-

quest arriving less than 10ms after its predecessor (Fig-

ure 22.) The peak in the back right hand corner of the

graph represents this anomalous HP-UX write tra�c.

Such clumps often contained runs of physically contigu-

ous disk blocks: at a cache size of 6mb, the mean run
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Figure 21: Physical disk tra�c during the summary bench-

mark.
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size and inter-arrival time at the device driver. The vertical

axis is the number of disk writes during the benchmark;

the foreground one is a set of time buckets.

size was 15 blocks, with 91% of the clumped requests

being found in runs of 5 or more blocks. The largest

such run we observed was of 244 contiguous blocks, or

1.9mb of data.

We tracked the e�ect down to an algorithm in the

HP-UX function getnewbuf, which is called to select a

block to toss out of the cache. It scans down the lru-

ordered list of eligible blocks looking for a clean block

to be its victim for replacement. If it encounters any

dirty blocks as it goes down the list, it schedules them

all for writing (to clean them). It continues this until it



�nds a clean block, or until there are no more blocks in

the list, at which point it waits until one of the writes

completes. Since the list sometimes contained long lists

of dirty blocks, often associated with serial writes to

the same �le, the e�ect was to generate large number

of writes with very short inter-arrival times.

It might be thought that these writes would be nec-

essary anyway, and pushing the dirty blocks out to disk

would not change the total number of I/Os. However,

if the cache is big enough, short-lived temporary �les

may never be written to disk: their blocks get marked

empty when the �le is deleted. Only at smaller cache

sizes will some such blocks need to be reclaimed and

their contents pushed to disk. The result is that HP-UX

sometimes needlessly cleans many more blocks than are

immediately required when searching for a single bu�er

to replace.

It is not immediately clear what a better policy would

be for it: skipping over dirty blocks would sacri�ce true

lru behavior; using the �rst block, and waiting for a

synchronous write to clean it if was dirty, would seri-

alize the cleaning and get-new-block operations. This

behavior is a fundamental di�erence between the two

page-cleaning algorithms: XMF avoids the issue by us-

ing the clock algorithm to maintain a free pool of clean

blocks, cleaning a few blocks each time it runs.

In summary, because the (postulated) longer resi-

dency times of inode and indirect blocks e�ectively re-

duces the HP-UX cache size, it needs to reclaim a few

more blocks than XMF at a given physical cache size.

(The slight increase in physical reads for HP-UX by

comparison with XMF shown in Figure 21 supports this

hypothesis.) When this happens, the getnewbuf algo-

rithm can result in large increases in disk write counts,

and HP-UX's performance su�ers accordingly.

Appendix II: statistical details

This appendix presents some statistical information on

the data presented in this paper.

The table below shows the number of times each ex-

periment was run and the mean and maximum vari-

ances that were measured for it. It also shows the

number of \outlier" data points that were discarded

as a percentage of the total points for the whole graph

(e.g. the occasional instruction count measurement that

coincided with an external interrupt and was very much

larger than the remainder of the data). Figures 13, 17,

18, 19, 20, 21, and 22 show data that was gathered from

a single experimental run for each data point.

XMF HP-UX

Figure % Dis- % Variances % Variances

number Runs cards Mean Max Mean Max

5 30 6 | 0.6 | 0.6

6 15 3 1.3 4.3 2.7 7.9

8 10 10 2.1 2.8 2.2 3.3

9 5 6 3.2 5.9 3.1 10.7

12 15 3 1.7 3.9 3.0 3.9

14 2 0 0.2 0.4 1.0 1.4

15 6 0 1.5 4.6 5.5 9.9

16 6 0 1.8 2.6 4.6 11.1
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