
Lessons and challenges in automating data dependability

Kimberly Keeton, Dirk Beyer, Jeffrey Chase, Arif Merchant, Cipriano Santos, and John Wilkes
Hewlett-Packard Laboratories, Palo Alto, CA

Duke University, Durham, NC
{kimberly.keeton,dirk.beyer,arif.merchant,cipriano.santos,john.wilkes}@hp.com, chase@cs.duke.edu

Abstract: Designing and managing dependable sys-
tems is a difficult endeavor. In this paper, we describe
challenges in this vast problem space, including pro-
visioning and allocating shared resources, adaptively
managing system dependability, expressing dependabil-
ity goals, interactively exploring the design space, and
designing end-to-end service dependability. We outline
the optimization-based approach we’ve used to tackle
the data dependability portion of this space, and de-
scribe how we can extend that approach to address an
even larger dependability scope.

1 Introduction

Dependability encompasses the sometimes compet-
ing goals of reliability, availability and performance.
As a result, managing computer system dependabil-
ity is even more difficult than managing performance.
Techniques for improving availability and reliability of-
ten consume additional resources for redundancy, fur-
ther contributing to the dilemma of how to allocate re-
sources. Specifying dependability goals is challenging,
and determining if they have been met is even harder.
Failures are uncommon and unpredictable, and it is dif-
ficult to determine whether a particular system config-
uration can meet a probabilistically specified availabil-
ity bound (e.g., five nines) for a given incidence of fail-
ures. Designing systems to meet these goals is also diffi-
cult: the design space of techniques for protecting infor-
mation is surprisingly large, with myriad configuration
choices. It’s tough to understand how the techniques
interact and how they impact recovery behavior after a
failure.

Despite the vastness of this problem space, we have
made progress towards the goal of automating the de-
sign of dependable data systems. At the 2002 SIGOPS
European Workshop we explored ways to express de-
pendability goals for automating storage system de-
sign [12]. Since then, we’ve realized that specifying
dependability goals in financial terms (as penalties for
downtime and data loss) allows us to evaluate cost vs.
risk tradeoffs in a common currency. Our automated
storage design tool uses this insight to formulate data

dependability design as an optimization problem and
employs quantitative models to explore the dependabil-
ity implications of different storage design choices [11].
The tool determines what secondary copies should be
made throughout the distributed storage hierarchy to
protect the primary copy of a data set against vari-
ous failures. It picks the appropriate data protection
techniques (e.g., tape backup or remote mirroring) and
recovery techniques (e.g., data reconstruction or site
failover), as well as key configuration parameters, such
as the frequency of update propagation, the hardware
configuration, and the type of spare resources employed.

In this paper, we step back and outline challenges
and opportunities in the larger space of managing de-
pendable computer systems (Section 2). Section 3 de-
scribes our formulation for a small portion of the prob-
lem space, and how that solution can be adapted to ad-
dress an even broader scope. Our goal is to encourage
discussion about this exciting and important area, and to
prompt an exchange of ideas about possible solutions.
Section 4 concludes.

2 Defining the dependability landscape

Our conversations with consultants and customers in-
dicate that information system designers and adminis-
trators have a wide range of needs when managing sys-
tem dependability. Broadly speaking, these needs in-
clude coping with complex, dynamic systems; express-
ing goals and understanding choices; and holistically
approaching dependability. In the following sections,
we describe these needs in more detail.

2.1 Coping with complex, dynamic systems

Dealing with complex systems that may change over
time requires the ability to provision, allocate and share
resources, adaptively manage dependability, and exten-
sibly support data protection techniques, as shown in
Figure 1.

Provisioning, allocating and sharing resources.
Shared resource environments such as utility data cen-



Host Host

Storage-area
network

Primary site

Disk

arrayTape lib

Secondary site(s)

Tape transport

WAN link(s)

Data storage
system

Business
requirements

Business
requirements

ModelsModels

Optimization
engine

Optimization
engine

Dependability 
designs

Dependability 
designs

Automated
design tool

Richer
failure
space

New data 
protection and
recovery
techniques

Adaptive
dependability
management

Allocating
existing

resources

Measurement-
based

feedback

Changing
business and

workload
requirements

Figure 1: Extensions for managing dependability in complex,
dynamic systems.

ters [6, 7, 9, 14, 16] and disaster recovery sites are be-
coming more popular. They require the ability to pro-
vision resources and allocate them among competing
customers. Customers who manage their own comput-
ing and storage infrastructure must also balance alloca-
tions between competing workloads. For instance, some
multi-national companies employ multiple primary sites
on different continents, which serve as secondary sites
for one another; each site must allocate its resources be-
tween the local primary workload and the remote sec-
ondary workload.

Both customers and service providers want to design
systems that will protect against a range of failures, not
just cope with single failure scenarios. In addition to
“green field” provisioning, they also want to find the
best way to allocate their existing resources.

Extensible support for data protection techniques.
Technology continues to offer us an ever-growing set of
choices for protecting data. Traditionally, data depend-
ability for the primary copy was maintained through
RAID techniques to withstand disk failures, and sec-
ondary copies (backups) made on magnetic tapes. We
now also have the ability to create local online copies
of the data, remote replicas maintained through syn-
chronous or asynchronous updates, and backups onto
disk, optical disk and a variety of tape technologies.
Moreover, these methods can be combined to meet re-
quirements that a single technique cannot achieve. For
instance, to meet regulatory requirements while avoid-
ing degraded performance, system designers may em-
ploy synchronous mirroring to a local site in concert
with asynchronous mirroring between the second (lo-
cal) site and a third remote site. Alternatively, data may
be mirrored to a secondary site, where it is backed up
to tape. In all cases, system designers must be able
to understand the alternatives’ recovery behavior suf-

ficiently to pick the most appropriate solution among
the different techniques, including choosing the appro-
priate configuration parameters (e.g., number of wide
area links, asynchronous mirroring write absorption in-
terval). They also want to take advantage of new tech-
nologies as they become available.

Adaptive dependability management. Dependable
system design and initial deployment are the first steps
in managing the system as it evolves in response to
changing business and workload demands, component
upgrades and failures. Once a storage system has been
deployed, system administrators and users want assur-
ance that the system design will respond to failures as
expected (e.g., with reasonable recovery time and data
loss). Should business or workload demands evolve,
they want to reallocate and/or reprovision resources to
accommodate these changes. Should a failure occur,
they need to determine whether and how the workloads
can continue running on the resources that remain. An
important consideration is the cost of recovering work-
loads from the failed resources onto the available re-
sources. Because the available resources may not be
sufficient to support the original workloads, system ad-
ministrators must be able to decide which workloads to
stop to “make room” for the most critical workloads.
(These stopped workloads can later be restarted if addi-
tional resources can be provisioned.)

2.2 Expressing goals and understanding
choices

Provisioning, allocating and adaptively managing re-
sources are critical for ensuring the dependable opera-
tion and evolution of the underlying system. Interest-
ingly, interacting with customers to gather requirement
information and to show them the financial implications
of their choices may be nearly as important. Figure 2
illustrates this iterative process.

Collecting meaningful goals. Data dependability
design is predicated on the ability to collect meaningful
customer goals. The better (e.g., more quantitatively)
customers can specify their goals, the better the chance
that the resulting system will meet those goals. Un-
fortunately, customers frequently can’t state their goals
quantitatively. They have an even harder time describing
quantitative utility functions that ascribe financial impli-
cations to their desired service levels.

Consultants currently use various techniques, includ-
ing business continuity assessments [5], to determine a
customer’s readiness to handle a disaster and to collect
qualitative information on current management and dis-
aster recovery practices. These tools are used to estimate
business continuity goals such as recovery time and re-
covery point objectives (RTOs and RPOs) [4]. The RTO



Business 
requirements

Business 
requirements

ModelsModels

Optimization 
engine

Optimization 
engine

Dependability 
designs

Dependability 
designs

Automated
design tool

D
a
ta

 o
u

ta
g

e
 

p
e
n

a
lt

y
 r

a
te

 (
$
/h

r)

Data loss 
penalty rate ($/hr)

Backup

Batched 
async
mirror

Async mirror

Sync
mirror

Failover
Reconstruct

Dependability
designs

15
8

15
80

15
80

0

15
80

00

15
80

00
0

15
80

00
00

158

1580

15800

158000

1580000

15800000

0

200

400

600

800

1000

1200

1400

Data outage 
penalty 
rate ($/hr)

Data loss 
penalty 

rate ($/hr)

O
v
e
ra

ll
 c

o
s

t 
(k

$
)

Iterate

Business
requirements

Assessment
Q1:
Q2:
Q3:
…

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

Student

accounts

Company

documents

Web server Consumer

banking

Central bank

Industry segment

C
o

n
tr

ib
u

ti
o

n
 t

o
 o

v
e

ra
ll

 c
o

s
ts

Primary Array Outlays Mirroring Outlays Backup Outlays

Spare Resources Outlays Data Unavailability Penalties Data Loss Penalties

Figure 2: Iterative process for expressing goals and understand-
ing choices.

provides an upper bound on the elapsed time after a fail-
ure before a business service (e.g., application) is up and
running again. When a failure occurs, it may be nec-
essary to revert back to a consistent point prior to the
failure, which will entail the loss of any updates after
that point. The RPO provides an upper bound on the
recent updates (expressed in time) lost during recovery
from a failure. Although these metrics do provide quan-
titative recovery goals, they provide no insight into the
financial ramifications of coping with failures. Design-
ing the right tools (e.g., questionnaires, graphical user
interfaces) to query customers for quantitative, financial
business goals remains an open problem.

Richer goal specifications. Penalty rates [11] pro-
vide an alternative abstraction for representing cus-
tomers’ business requirements for downtime (US dollars
per hour downtime) and data loss (US dollars per hour
of lost recent updates). However, linear penalty rates
may be insufficient to describe customers’ requirements.
For instance, the first five minutes of downtime may be
inexpensive, the next hour slightly more expensive, the
next 8 hours very expensive, and so on — all the way to
bankruptcy in the limit. Downtime at different times of
the day (or week or month) may also be penalized dif-
ferently. Additionally, failures resulting in recent data
loss at different points in the secondary copy creation
cycle may be valued differently. For example, a failure
during the last minute before a central bank synchro-
nizes with the US Securities and Exchange Commission
is more critical than a failure in the first minute after the
synchronization has completed. What’s more, system
designers may want the ability to express future growth
trends, as well as more intangible goals, such as mini-
mizing staff training requirements, design simplicity, or
design conservatism to handle risk aversion (e.g., “the
first failure means no bonus; the second failure means

no job”).
Exploring the design space. Customers may not

understand the ramifications of the design choices they
make. In some cases, they may not be able to quantify
even simple dependability goals. A toolset that can eas-
ily navigate the design space to evaluate “what if” sce-
narios would be quite useful to increase customer under-
standing. Even if they can’t quantify their requirements,
the ability to interactively explore the design space may
show the boundaries between different operational re-
gions, where different solutions prevail. Customers may
find choosing between regions (e.g., ranges of input re-
quirements) easier than picking a particular point in the
requirements space.

2.3 Holistic approaches to dependability

Making data storage systems dependable is a critical
first step towards the goal of provisioning overall system
resources to meet customers’ quality of service goals.
We consider separately the questions of end-to-end de-
pendability design and multi-attribute provisioning.

End-to-end dependability design. Upon failures,
the entire infrastructure must recover to permit the ser-
vice to continue operation. As a result, ultimately users
want to provision server, networking, middleware and
application resources to meet their end-to-end service
dependability goals. This more holistic approach means
that the space of potential dependability techniques
is expanded to include mechanisms at other levels of
the application stack, including snapshots, checkpoint-
ing, logging, replication and failover at the file system,
database and application levels, as well as interactions
between these mechanisms. For example, Total Recall
dynamically sets the number of file replicas according to
a per-file availability target for given site failure rates in
a peer-to-peer system [3]. The batch-aware file system
dynamically determines whether to checkpoint applica-
tion state to a temporary file to avoid restarting computa-
tions if a task fails [2]. The AVED project examines how
to automatically provision computational resources be-
tween tiers in a multi-tier environment to support avail-
ability and performance goals [8].

Multi-attribute provisioning. Although most re-
search in automating design decisions has focused on
performance alone [1] or on availability and reliabil-
ity [8, 11], customers ultimately want to design systems
that will meet all of their goals, including reliability,
availability, performance and security. The notion of
performability — performance at a given level of avail-
ability — partially allows customers to describe their
needs. For example, the system should perform at “at
least 200 MB/sec 25% of the time, at least 150 MB/sec
50% of the time, at least 100 MB/sec 95% of the time



and 0 MB/s no more than 5% of the time.”
Given that the price tag for a system that meets all

of the customer’s goals may be too high, customers
also need a way to express tradeoffs between the at-
tributes, and to consider these tradeoffs when design-
ing the system. For instance, a customer may want
to achieve a base level of reliability before worrying
about performance and availability, and then a base level
of performability before balancing these concerns (e.g.,
“achieve reliability to level A, followed by performa-
bility to level B, followed by an even mix up to levels C
and D.”) More generalized utility functions may provide
a method for expressing such tradeoffs [13].

3 Automating data dependability

Although the problem space described in the previ-
ous section is very rich, we have made considerable
progress in tackling a limited portion of that space.
In [11], we describe the architecture and evaluation of
an automated tool for designing dependable storage sys-
tems. It combines quantitative models of the most com-
mon data protection and recovery techniques — remote
mirroring, tape backup, data reconstruction and failover
— with an off-the-shelf optimizing solver to choose the
best alternative.

Customers provide business goals expressed as finan-
cial penalty rates: US dollars per hour of outage time
(unavailability) and US dollars per hour of data loss,
specified as how much recent data (in time) is lost during
the recovery process. By expressing business require-
ments as financial penalties, we can cast the overall de-
sign question as an optimization problem, using math-
ematical programming techniques (e.g., mixed-integer
programming [17]). The optimization objective is to
minimize the overall business costs, defined as outlays
plus penalties for a failure of the primary copy of data
(e.g., due to array failure or site disaster). Outlays in-
clude equipment and facilities costs for the primary ar-
ray(s), data protection techniques, failover alternatives
and spare resources. Penalties are associated with the
outage time and data loss for recently-written data. The
outputs of the design tool are the storage solution de-
sign, the estimated worst-case data loss and recovery
times, and the outlay and penalty costs. In addition to
selecting the data protection and recovery techniques
with the least overall cost, the solution includes settings
for parameter values, such as the number of tape drives
or network links, the duration of backup windows, and
the type of spare resources employed (e.g., hot vs. cold,
dedicated vs. shared).

The resulting optimization tool can be used for a
number of different purposes, including evaluating the

dependability and cost of existing designs, determining
the best solution for the specified business inputs, and
exploring the design space across a wide range of busi-
ness requirements.

Narrowing the scope of the problem allowed us to
make considerable progress, at the cost of somewhat re-
stricted functionality. For simplicity, we treat all work-
load data objects as having the same goals. The current
optimization framework focuses on the question of how
to provision resources for “green field” designs, without
considering how to allocate or augment an existing pool
of resources. It performs a worst-case scenario analysis
by considering the effects of a single failure at a time,
resulting in designs that focus on that failure type, to the
exclusion of others. For ease of prototyping, we imple-
ment the models of data protection technique behavior
directly in the optimization framework. However, this
monolithic structure makes it difficult to add new data
protection techniques, or to combine existing ones.

Our experience leads us to believe that the general
approach of treating dependability design as an opti-
mization problem holds promise for addressing an even
larger portion of the dependability management space.
In this section, we outline how our existing framework
can be extended in a straightforward fashion to answer
some of the challenges raised in Section 2.

3.1 Allocating shared resources

Addressing challenges in allocating and sharing
already-provisioned resources requires several exten-
sions to our automated design infrastructure:

Multiple workload objects. Provisioning and allo-
cating resources in shared environments requires sup-
port for multiple workload objects, including the ability
to specify independent requirements for different work-
load objects and the ability to describe dependencies be-
tween workload objects. (For example, the ability to
access user data depends on the availability of operat-
ing system and file system data.) The models and op-
timization framework must now consider not only what
resources are provisioned, but also how the workload
objects are allocated to resources and how the objects
depend on one another. The framework must also be
able to evaluate penalty functions separately for each
workload object.

Allocating existing resources. The optimization
support for allocating an existing set of resources is
straightforward: we merely fix the values for decision
variables corresponding to those resources (e.g., num-
ber of tape drives, wide area mirroring links, or disk ar-
rays). The same objective function used in the “green
field” design case can then be evaluated to determine
the allocation that minimizes the overall costs.



Expected system dependability. Computing ex-
pected dependability under a broad range of different
failures requires support from both the models and the
solver. First, the models must be able to estimate the
recovery time and recent data loss under each failure
type of interest. Examples include primary array/site
failures, partial primary failures, data protection tech-
nique failures (e.g., mirroring link(s), tape drive(s) or
tape media), and multiple simultaneous failures (e.g., a
failure scope large enough to take out both primary and
secondary copies).

The solver needs the ability to consider multiple po-
tential scenarios and weight them appropriately. Fortu-
nately, robust optimization techniques [15] can be ap-
plied. Briefly, a separate optimization model is con-
structed for each possible failure scenario, with local-
ized decision variables that correspond to decisions that
must be made only under that scenario. Decisions that
are independent of the failure scenario are represented
by decision variables common to all of the models.
The overall optimization model incorporates all of the
scenario-specific constraints, and computes the overall
objective function by appropriately weighting the val-
ues of the individual objective functions. This approach
has the added benefit that it’s easy to incorporate a new
failure scenario into the solver.

Choosing the appropriate weighting factors is chal-
lenging: merely using failure occurrence probabilities
will discount the potentially devastating losses that oc-
cur for very infrequent, but large-scale failures. We be-
lieve that it may be more appropriate to use relative fail-
ure probabilities or perceived failure importance. The
latter option permits users to express their risk aversion,
and as a result, more fully consider the magnitude of
losses accompanying disasters.

3.2 Extensible modeling support

We deal with the ever-increasing list of data pro-
tection techniques by providing a framework in which
models of individual dependability techniques can be
composed [10]. The framework uses a common set of
parameters to describe the most popular data protection
techniques, which enables the addition of models for
new techniques as they are invented. Because the de-
tailed models of each technique’s operation are main-
tained separately from the composition framework, it is
also straightforward to incorporate more sophisticated
models of existing techniques.

An open question in this space is how to describe rea-
sonable combinations of data protection techniques. For
instance, to create a consistent tape backup, one needs
access to a point in time copy such as a snapshot or
array-based split mirror. There may also be constraints

Hardware and 
software failures

and human errors

Host Host

Storage-area
network

Primary site

Disk

array

Snapshot,

split mirror
Disk

array

Secondary site(s)

Storage-area
network

remote mirroring

Tape transport

Tape libraryTape library

Backup

Data

reconstruction

failover

Reconstruct

Host

Secondary copy 
creation

success/failure, 
performance

Reconstruction
success/failure,

performance

Failover
success/failure,

performance

Workload
performance
characteristics

Figure 3: Instrumentation to support adaptive dependability
management.

on which order techniques may be applied: for example,
it makes sense to mirror data from the local array to a re-
mote array, and then create a tape backup at the remote
site, but not the other way around. Such a “grammar”
would describe valid inputs to the modeling framework,
and also inform the solver’s need to express feasible so-
lutions.

3.3 Richer goal specifications

To support more complex business requirements, we
must determine how to quantitatively specify them and
how to extend the models and solver to incorporate the
more detailed requirements. For instance, we could use
piecewise linear penalty rates to capture penalties that
increase as a function of the length of outage or recent
data loss duration. This approach permits us to assign
very large penalty rates to impose hard constraints on
recovery time and data loss (e.g., corresponding to the
RTO and RPO values used by consultants today). In
this case, the solver would be extended to assess penal-
ties as a function of outage or data loss duration. Cap-
turing qualitative or intangible requirements, such as de-
sign simplicity, remains an open problem.

3.4 Adaptive dependability management

Analogous to the performance provisioning case [1],
we envision that our solver could be included in an adap-
tive management cycle to (re)design, (re)configure and
analyze the dependable system throughout its lifecycle.

To support reprovisioning or augmenting system re-
sources, we can extend the solver. To expand the exist-
ing resources to support increased demand, we can use
the same objective function as for “green field” design,



but dramatically lower the price of existing resources,
to ensure they are used to their fullest capacity. Re-
allocating resources in response to failures or disasters
is somewhat more complicated. In addition to evaluat-
ing the best allocation for the reduced set of resources,
the solver must also capture the costs of recovering the
workloads from the failed resources onto the available
resources.

Once the storage system has been deployed, the man-
agement system should be able to verify that the de-
sign’s achieved behavior meets the behavior predicted
by the modeling framework. As shown in Figure 3, the
management system can measure the normal mode be-
havior of data protection techniques to quantify the per-
formance of successful secondary copy creation (e.g.,
incremental tape backup). It can measure recovery be-
havior after actual failures (e.g., accidental deletions by
users, array component failures). It can also measure re-
covery behavior under disaster recovery drills to verify
correct operation under more severe and infrequent fail-
ures. If sufficient performance and capacity exist in the
system, the management system could also proactively
inject smaller-scope faults to test recovery behavior.

These measurements of normal behavior and recov-
ery time and data loss under failures can provide feed-
back to the modeling framework, to help adjust its esti-
mates for future designs. The management system can
additionally collect information on the frequencies of
various types of failures, to inform its failure models.
Finally, to fine-tune the solver’s workload models, the
management system can also measure the update char-
acteristics of the workloads running on the system.

4 Conclusions

Although automating the design of dependable stor-
age systems might have seemed an infeasible goal upon
first consideration, we’ve demonstrated that it is an
achievable one. In this paper, we’ve articulated several
research opportunities for managing dependable sys-
tems. We’ve also described one potential approach —
optimization based on financial objectives — for ad-
dressing these challenges. By outlining this vision, we
hope to entice other researchers to join us in exploring
this exciting space.

References

[1] E. Anderson, M. Hobbs, K. Keeton, S. Spence, M. Uysal,
and A. Veitch. Hippodrome: running circles around stor-
age administration. In Proc. 1st Conf. File and Storage
Technologies (FAST), pages 175–188, Monterrey, CA,
USA, January 2002.

[2] J. Bent, D. Thain, A. Arpaci-Dusseau, R. Arpaci-
Dusseau, and M. Livny. Explicit control in the batch-
aware distributed file system. In Proc. 1st Symp. on
Networked Systems Design and Implementation (NSDI),
pages 365–378, San Francisco, CA, USA, March 2004.

[3] R. Bhagwan, K. Tati, Y. Cheng, S. Savage, and
G. Voelker. Total Recall: System support for automated
availability management. In Proc. NSDI, pages 337–350,
San Francisco, CA, USA, March 2004.

[4] C. Brooks, M. Bedernjak, I. Juran, and J. Merryman.
Disaster recovery strategies with Tivoli storage manage-
ment. IBM International Technical Support Organiza-
tion, version 2 edition, November 2002.

[5] Hewlett-Packard Company. Free busi-
ness continuity readiness assessment.
http://www.hp.com/large/promo/bcsurvey/index.html,
Last accessed September 2004.

[6] Hewlett-Packard. Utility data center.
http://www.hp.com/large/infrastructure/utilitydata/overview/,
Last accessed September 2004.

[7] IBM. On demand business.
http://www.ibm.com/ondemand, Last accessed Septem-
ber 2004.

[8] J. Janakiraman, J. R. Santos, and Y. Turner. Automated
system design for availability. In Proc. Intl. Conf. on
Dependable Systems and Networks (DSN), Firenze, Italy,
June 2004.

[9] D. Kandlur and J. Killela eds. Utility computing. IBM
Systems Journal special issue, 43(1), 2004.

[10] K. Keeton and A. Merchant. A framework for evaluating
storage system dependability. In Proc. DSN, pages 877–
886, Firenze, Italy, June 2004.

[11] K. Keeton, C. Santos, D. Beyer, J. Chase, and J. Wilkes.
Designing for disasters. In Proc. 3rd FAST, pages 59–72,
San Francisco, CA, USA, March 2004.

[12] K. Keeton and J. Wilkes. Automating data dependability.
In Proc. 10th ACM-SIGOPS European Workshop, pages
93–100, Saint-Emilion, France, September 2002.

[13] C. Lee. On quality of service management. Technical re-
port CMU-CS-99-165, Carnegie Mellon University, Au-
gust 1999.

[14] Sun Microsystems. N1 grid — in-
troducing just in time computing.
http://wwws.sun.com/software/solutions/n1/wp-n1.pdf.

[15] H. Vladimirou and S. Zenios. “Stochastic Program-
ming and Robust Optimization” in Advances in Sensi-
tivity Analysis and Parametric Programming, edited by
T. Gal and H. Greenberg, chapter 12. Kluwer Academic
Press, 1997.

[16] J. Wilkes, J. Mogul, and J. Suermondt. Utilification.
In Proc. of the 11th ACM SIGOPS European Workshop,
Leuven, Belgium, September 2004.

[17] L. Wolsey. Integer Programming. John Wiley and Sons,
Inc., 1998.


